Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

Abstract

Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins—micelles that transport lipids and other hydrophobic substances in the blood—and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of pure and functionalized QD- and SPIO-nanosomes.
Figure 2: Characterization of nanocrystals, QD- and SPIO-nanosomes.
Figure 3: In vitro uptake of QD- and SPIO-nanosomes.
Figure 4: In vivo imaging of intravenously injected QD- and SPIO-nanosomes.
Figure 5: Biodistribution and relaxometry of SPIO-nanosomes in vivo.
Figure 6: Quantitative real-time in vivo imaging of hepatic lipoprotein uptake in wild-type, apolipoprotein E- and LDL-receptor-deficient mice.

Similar content being viewed by others

References

  1. Sosnovik, D. E., Nahrendorf, M. & Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115, 2076–2086 (2007).

    Article  Google Scholar 

  2. Mulder, W. J., Strijkers, G. J., van Tilborg, G. A., Griffioen, A. W. & Nicolay, K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19, 142–164 (2006).

    Article  CAS  Google Scholar 

  3. Bowen, C. V., Zhang, X. W., Saab, G., Gareau, P. J. & Rutt, B. K. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn. Reson. Med. 48, 52–61 (2002).

    Article  CAS  Google Scholar 

  4. Simon, G. H. et al. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur. Radiol. 16, 738–745 (2006).

    Article  Google Scholar 

  5. Yablonskiy, D. A. & Haacke, E. M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn. Reson. Med. 32, 749–763 (1994).

    Article  CAS  Google Scholar 

  6. Tromsdorf, U. I. et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 7, 2422–2427 (2007).

    Article  CAS  Google Scholar 

  7. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  8. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  9. Bruchez, M., Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  10. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  11. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  12. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  13. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  14. Bamba, V. & Rader, D. J. Obesity and atherogenic dyslipidemia. Gastroenterology 132, 2181–2190 (2007).

    Article  CAS  Google Scholar 

  15. Glassberg, H. & Rader, D. J. Management of lipids in the prevention of cardiovascular events. Annu. Rev. Med. 59, 79–94 (2008).

    Article  CAS  Google Scholar 

  16. Frias, J. C., Williams, K. J., Fisher, E. A. & Fayad, Z. A. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J. Am. Chem. Soc. 126, 16316–16317 (2004).

    Article  CAS  Google Scholar 

  17. Corbin, I. R. et al. Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8, 488–498 (2006).

    Article  CAS  Google Scholar 

  18. Glickson, J. D. et al. Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol. Imaging 7, 101–110 (2008).

    CAS  Google Scholar 

  19. Penfield, J. G. & Reilly, R. F., Jr. What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol. 3, 654–668 (2007).

    Article  Google Scholar 

  20. Karpe, F. Postprandial lipoprotein metabolism and atherosclerosis. J. Intern. Med. 246, 341–355 (1999).

    Article  CAS  Google Scholar 

  21. Zheng, C., Murdoch, S. J., Brunzell, J. D. & Sacks, F. M. Lipoprotein lipase bound to apolipoprotein B lipoproteins accelerates clearance of postprandial lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 26, 891–896 (2006).

    Article  CAS  Google Scholar 

  22. Merkel, M., Eckel, R. H. & Goldberg, I. J. Lipoprotein lipase: genetics, lipid uptake and regulation. J. Lipid Res. 43, 1997–2006 (2002).

    Article  CAS  Google Scholar 

  23. Heeren, J., Niemeier, A., Merkel, M. & Beisiegel, U. Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J. Mol. Med. 80, 576–584 (2002).

    Article  CAS  Google Scholar 

  24. Beisiegel, U., Weber, W. & Bengtsson-Olivecrona, G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc. Natl Acad. Sci. USA 88, 8342–8346 (1991).

    Article  CAS  Google Scholar 

  25. Mahley, R. W. & Ji, Z. S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1–16 (1999).

    CAS  Google Scholar 

  26. Martins, I. J. & Redgrave, T. G. Obesity and post-prandial lipid metabolism. Feast or famine? J. Nutr. Biochem. 15, 130–141 (2004).

    Article  CAS  Google Scholar 

  27. Chan, D. C., Barrett, P. H. & Watts, G. F. Recent studies of lipoprotein kinetics in the metabolic syndrome and related disorders. Curr. Opin. Lipidol. 17, 28–36 (2006).

    Article  CAS  Google Scholar 

  28. Magkos, F. & Sidossis, L. S. Measuring very low density lipoprotein-triglyceride kinetics in man in vivo: how different the various methods really are. Curr. Opin. Clin. Nutr. Metab. Care 7, 547–555 (2004).

    Article  Google Scholar 

  29. Havel, R. J. & Hamilton, R. L. Hepatic catabolism of remnant lipoproteins: where the action is. Arterioscler. Thromb. Vasc. Biol. 24, 213–215 (2004).

    Article  CAS  Google Scholar 

  30. Hussain, M. M. et al. Chylomicron metabolism—chylomicron uptake by bone-marrow in different animal species. J. Biol. Chem. 264, 17931–17938 (1989).

    CAS  Google Scholar 

  31. Rensen, P. C. et al. Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo. J. Lipid Res. 38, 1070–1084 (1997).

    CAS  Google Scholar 

  32. Saini, S. et al. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162, 211–216 (1987).

    Article  CAS  Google Scholar 

  33. de Rijke, Y. B., Hessels, E. M. & Van Berkel, T. J. Recognition sites on rat liver cells for oxidatively modified beta-very low density lipoproteins. Arterioscler. Thromb. 12, 41–49 (1992).

    Article  CAS  Google Scholar 

  34. Gillis, P., Moiny, F. & Brooks, R. A. On T(2)-shortening by strongly magnetized spheres: a partial refocusing model. Magn. Reson. Med. 47, 257–263 (2002).

    Article  Google Scholar 

  35. Brooks, R. A. T(2)-shortening by strongly magnetized spheres: a chemical exchange model. Magn. Reson. Med. 47, 388–391 (2002).

    Article  CAS  Google Scholar 

  36. Lee, J. H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med. 13, 95–99 (2007).

    Article  CAS  Google Scholar 

  37. McAteer, M. A. et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Med. 13, 1253–1258 (2007).

    Article  CAS  Google Scholar 

  38. Shapiro, E. M. et al. MRI detection of single particles for cellular imaging. Proc. Natl Acad. Sci. USA 101, 10901–10906 (2004).

    Article  CAS  Google Scholar 

  39. Tiret, L. et al. Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease—the EARS II study (European Atherosclerosis Research Study). Eur. J. Clin. Invest. 30, 578–585 (2000).

    Article  CAS  Google Scholar 

  40. Aalto-Setala, K. et al. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J. Clin. Invest. 90, 1889–1900 (1992).

    Article  CAS  Google Scholar 

  41. Merkel, M. et al. Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc. Natl Acad. Sci. USA 95, 13841–13846 (1998).

    Article  CAS  Google Scholar 

  42. Ishibashi, S., Herz, J., Maeda, N., Goldstein, J. L. & Brown, M. S. The 2-receptor model of lipoprotein clearance—tests of the hypothesis in knockout mice lacking the low-density-lipoprotein receptor, apolipoprotein-e, or both proteins. Proc. Natl Acad. Sci. USA 91, 4431–4435 (1994).

    Article  CAS  Google Scholar 

  43. Herz, J. et al. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 92, 4611–4615 (1995).

    Article  CAS  Google Scholar 

  44. Mortimer, B. C., Beveridge, D. J., Martins, I. J. & Redgrave, T. G. Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway. J. Biol. Chem. 270, 28767–28776 (1995).

    Article  CAS  Google Scholar 

  45. Nagelkerke, J. F., Havekes, L., van Hinsbergh, V. W. & Van Berkel, T. J. In vivo catabolism of biologically modified LDL. Arteriosclerosis 4, 256–264 (1984).

    Article  CAS  Google Scholar 

  46. Merkel, M. et al. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J. Biol. Chem. 277, 7405–7411 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Laatsch, R. Fischer and A. Bartelt for helpful discussions. K. Cornils, B. Holstermann, M. Warmer, S. Ehret and R. Kongi for excellent technical assistance, A. Kornowski for electron microscopy images and R. Capek for providing QD. O.T.B. is supported by a fellowship from the Studienstiftung des Deutschen Volkes. This work was supported by grants from the Deutsche Forschungsgemeinschaft to J.H., U.B. and A.E. (HE3645/2-2, BE829/10-1 and EY16/9-1).

Author information

Authors and Affiliations

Authors

Contributions

O.T.B performed and was involved in all aspects of the experiments. O.T.B, U.B. and J.H. designed the study. H.I., K.P., M.G.K. and G.A. performed MRI measurements. U.I.T., N.C.B., M.S.N., S.S., A.E. and H.W. were responsible for synthesis and characterization of nanocrystals. R.R. and H.H. were responsible for electron microscopy. O.T.B, U.I.T., U.B. and J.H. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Oliver T. Bruns.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1233 kb)

Supplementary Information

Supplementary Movie 1 (AVI 6044 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruns, O., Ittrich, H., Peldschus, K. et al. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nature Nanotech 4, 193–201 (2009). https://doi.org/10.1038/nnano.2008.405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing