Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference

Abstract

Adenosine is an important mediator of ethanol intoxication. In vitro, ethanol stimulates adenosine signaling by inhibiting the type 1 equilibrative nucleoside transporter (ENT1), whereas chronic ethanol exposure downregulates ENT1. It is not known, however, whether ENT1 is important for ethanol intoxication or consumption in vivo. Here we report that ENT1-null mice show reduced hypnotic and ataxic responses to ethanol and greater consumption of alcohol as compared with their wild-type littermates. These features are associated with a decrease in adenosine tone, as measured indirectly as a reduction in A1 receptor–mediated inhibition of glutamate excitatory postsynaptic currents (EPSCs) in the nucleus accumbens, leading to increased phosphorylation of CRE-binding protein (CREB) in the striatum. Treatment with an A1 receptor agonist decreases EPSC amplitude and reduces ethanol consumption in ENT1-null mice. Our results indicate that ENT1 has a physiological role in ethanol-mediated behaviors and suggest that decreased A1 adenosine receptor function promotes alcohol consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of ENT1-null mice.
Figure 2: Decreased acute alcohol responses in ENT1-null mice.
Figure 3: Increased alcohol preference in ENT1-null (−/−) mice.
Figure 4: Decreased A1 receptor modulation of striatal glutamate release in ENT1-null mice.
Figure 5: CREB phosphorylation is increased in the striatum of ENT1-null mice.
Figure 6: N6-CPA reduces ethanol self-administration in ENT1-null mice.

Similar content being viewed by others

References

  1. Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Dar, M.S. Mouse cerebellar adenosinergic modulation of ethanol-induced motor incoordination: possible involvement of cAMP. Brain Res. 749, 263–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Dar, M.S. Modulation of ethanol-induced motor incoordination by mouse striatal A1 adenosinergic receptor. Brain Res. Bull. 55, 513–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Carmichael, F.J. et al. Central nervous system effects of acetate: contribution to the central effects of ethanol. J. Pharmacol. Exp. Ther. 259, 403–408 (1991).

    CAS  PubMed  Google Scholar 

  5. Nagy, L.E. et al. Adenosine is required for ethanol-induced heterologous desensitization. Mol. Pharmacol. 36, 744–748 (1989).

    CAS  PubMed  Google Scholar 

  6. Nagy, L.E., Diamond, I., Casso, D.J., Franklin, C. & Gordon, A.S. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J. Biol. Chem. 265, 1946–1951 (1990).

    CAS  PubMed  Google Scholar 

  7. Sanderson, G. & Scholfield, C.N. Effects of adenosine uptake blockers and adenosine on evoked potentials of guinea-pig olfactory cortex. Pflugers Arch. 406, 25–30 (1986).

    Article  PubMed  Google Scholar 

  8. Diao, L. & Dunwiddie, T.V. Interactions between ethanol, endogenous adenosine and adenosine uptake in hippocampal brain slices. J. Pharmacol. Exp. Ther. 278, 542–546 (1996).

    CAS  PubMed  Google Scholar 

  9. Geiger, J.D. & Nagy, J.I. Heterogeneous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: an autoradiographic and membrane binding study. Brain Res. Bull. 13, 657–666 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, C.M. et al. Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ENT1) in brain. J. Neurochem. 73, 867–873 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Li, T.K., Lumeng, L. & Doolittle, D.P. Selective breeding for alcohol preference and associated responses. Behav. Genet. 23, 163–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Bowers, B.J. Applications of transgenic and knockout mice in alcohol research. Alcohol Res. Health 24, 175–184 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Crabbe, J.C. et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat. Genet. 14, 98–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Jennings, L.L. et al. Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neuropharmacology 40, 722–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Harvey, J. & Lacey, M.G. A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J. Neurosci. 17, 5271–5280 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlezon, W.A. Jr. et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Svenningsson, P. et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc. Natl. Acad. Sci. USA 99, 3182–3187 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Florio, C., Prezioso, A., Papaioannou, A. & Vertua, R. Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology 136, 311–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. El Yacoubi, M., Ledent, C., Parmentier, M., Costentin, J. & Vaugeois, J.M. The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A2A adenosine receptor antagonists. Psychopharmacology 148, 153–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Marston, H.M. et al. Pharmacological characterization of a simple behavioral response mediated selectively by central adenosine A1 receptors, using in vivo and in vitro techniques. J. Pharmacol. Exp. Ther. 285, 1023–1030 (1998).

    CAS  PubMed  Google Scholar 

  22. Self, D.W. et al. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848–1859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw-Lutchman, T.Z., Impey, S., Storm, D. & Nestler, E.J. Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48, 10–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Walters, C.L. & Blendy, J.A. Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Scholz, K.P. & Miller, R.J. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8, 1139–1150 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Scanziani, M., Capogna, M., Gahwiler, B.H. & Thompson, S.M. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9, 919–927 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, L-G. & Saggua, P. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12, 1139–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Backstrom, P., Bachteler, D., Koch, S., Hyytia, P. & Spanagel, R. mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29, 921–928 (2004).

    Article  PubMed  Google Scholar 

  31. Backstrom, P. & Hyytia, P. Ionotropic glutamate receptor antagonists modulate cue-induced reinstatement of ethanol-seeking behavior. Alcohol Clin. Exp. Res. 28, 558–565 (2004).

    Article  PubMed  Google Scholar 

  32. Ballarin, M., Fredholm, B.B., Ambrosio, S. & Mahy, N. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol. Scand. 142, 97–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Nagel, J. & Hauber, W. Effects of salient environmental stimuli on extracellular adenosine levels in the rat nucleus accumbens measured by in vivo microdialysis. Behav. Brain Res. 134, 485–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Baldwin, S.A., Mackey, J.R., Cass, C.E. & Young, J.D. Nucleoside transporters: molecular biology and implications for therapeutic development. Mol. Med. Today 5, 216–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Naassila, M., Ledent, C. & Daoust, M. Low ethanol sensitivity and increased ethanol consumption in mice lacking adenosine A2A receptors. J. Neurosci. 22, 10487–10493 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Svenningsson, P., Le Moine, C., Fisone, G. & Fredholm, B.B. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol. 59, 355–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Schuckit, M.A. Biological, psychological and environmental predictors of the alcoholism risk: a longitudinal study. J. Stud. Alcohol 59, 485–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Choi, D.S., Wang, D., Dadgar, J., Chang, W.S. & Messing, R.O. Conditional rescue of protein kinase Cε regulates ethanol preference and hypnotic sensitivity in adult mice. J. Neurosci. 22, 9905–9911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hodge, C.W. et al. Supersensitivity to allosteric GABAA receptor modulators and alcohol in mice lacking PKCε. Nat. Neurosci. 2, 997–1002 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Taylor and J. Connolly for technical support. This work was supported by funds provided by the State of California for medical research on alcohol and substance abuse through the University of California at San Francisco, and by the National Institute on Alcohol Abuse and Alcoholism (grant AA013588 to R.O.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O Messing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DS., Cascini, MG., Mailliard, W. et al. The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nat Neurosci 7, 855–861 (2004). https://doi.org/10.1038/nn1288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing