Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contrast agents for molecular photoacoustic imaging

Abstract

Photoacoustic imaging (PAI) is an emerging tool that bridges the traditional depth limits of ballistic optical imaging and the resolution limits of diffuse optical imaging. Using the acoustic waves generated in response to the absorption of pulsed laser light, it provides noninvasive images of absorbed optical energy density at depths of several centimeters with a resolution of 100 μm. This versatile and scalable imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced contrast agents. Understanding the relative merits of the vast range of contrast agents available, from small-molecule dyes to gold and carbon nanostructures to liposome encapsulations, is a considerable challenge. Here we critically review the physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents, highlighting key applications and present challenges for molecular PAI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoacoustic imaging of endogenous chromophores.
Figure 2: Photoacoustic imaging of genetically encoded chromophores.
Figure 3: Assembly of molecular imaging contrast agents for PAI combining a signaling compound with a targeting ligand.
Figure 4: Reported extinction coefficients (ɛ) of a selection of signaling compounds used for PAI.
Figure 5: Optical properties of NIR small-molecule dyes and application for imaging the extravascular target EGFR in pancreatic cancer.
Figure 6: Optical properties of GNPs and application for imaging the intravascular target αvβ3 integrin in glioma.
Figure 7: Assembly and optical properties of SWNTs and CP NPs, with applications in molecular imaging.

Similar content being viewed by others

References

  1. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L.V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taruttis, A., van Dam, G.M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548–1559 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Zackrisson, S., van de Ven, S.M.W.Y. & Gambhir, S.S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74, 979–1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levi, J. et al. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19, 1494–1502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, P.-C. et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 16, 18605–18615 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012).

    PubMed  Google Scholar 

  9. Luke, G.P., Myers, J.N., Emelianov, S.Y. & Sokolov, K.V. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res. 74, 5397–5408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohndiek, S.E. et al. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the anti-angiogenic therapy trebananib. J. Nucl. Med. 56, 1942–1947 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Guggenheim, J.A. et al. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast. J. Biomed. Opt. 20, 50504 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Xu, Z., Zhu, Q. & Wang, L.V. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. J. Biomed. Opt. 16, 066020 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Oh, J.-T. et al. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 11, 34032 (2006).

    Article  PubMed  Google Scholar 

  15. Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med. 7, 317ra199 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Kang, J.H. & Chung, J.-K. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med. 49, 164S–179S (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412–417 (2009).

    Article  CAS  Google Scholar 

  18. Laufer, J., Jathoul, A., Pule, M. & Beard, P. In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy. Biomed. Opt. Express 4, 2477–2490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Filonov, G.S. et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. Angew. Chem. Int. Ed. Engl. 51, 1448–1451 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Cai, X. et al. Multi-scale molecular photoacoustic tomography of gene expression. PLoS One 7, e43999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jathoul, A.P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015).

    Article  CAS  Google Scholar 

  24. Qin, C. et al. Tyrosinase as a multifunctional reporter gene for photoacoustic/MRI/PET triple modality molecular imaging. Sci. Rep. 3, 1490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Urabe, K. et al. The inherent cytotoxicity of melanin precursors: a revision. Biochim. Biophys. Acta 1221, 272–278 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lynch, I. & Dawson, K.A. Protein-nanoparticle interactions. Nano Today 3, 40–47 (2008).

    Article  CAS  Google Scholar 

  28. Lundqvist, M. Nanoparticles: tracking protein corona over time. Nat. Nanotechnol. 8, 701–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Petros, R.A. & DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Nie, L. et al. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10, 1585–1593 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Chatni, M.R. et al. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography. J. Biomed. Opt. 17, 076012 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dragulescu-Andrasi, A., Kothapalli, S.R., Tikhomirov, G.A., Rao, J. & Gambhir, S.S. Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc. 135, 11015–11022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiede, C. et al. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng. Des. Sel. 27, 145–155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Löfblom, J. et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584, 2670–2680 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Sun, H. et al. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol. Ther. Nucleic Acids 3, e182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olafsen, T. & Wu, A.M. Antibody vectors for imaging. Semin. Nucl. Med. 40, 167–181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agents Smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  38. Clark, A.J. et al. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. USA 113, 3850–3854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, S., Zhang, E., Su, Y., Cheng, T. & Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127–7138 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Jaffe, H.H. & Miller, A.L. The fates of electronic excitation energy. J. Chem. Educ. 43, 469–473 (1966).

    Article  CAS  Google Scholar 

  41. Lin, Y., Weissleder, R. & Tung, C.H. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug. Chem. 13, 605–610 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. Song, F. et al. Syntheses, spectral properties and photostabilities of novel water-soluble near-infrared cyanine dyes. J. Photochem. Photobiol. A Chem. 168, 53–57 (2004).

    Article  CAS  Google Scholar 

  43. Philip, R., Penzkofer, A., Baumler, W., Szeimies, R.M. & Abels, C. Absorption and fluorescence spectroscopic investigation of indocyanine green. J. Photochem. Photobiol. A Chem. 96, 137–148 (1996).

    Article  CAS  Google Scholar 

  44. Kuebler, W.M. How NIR is the future in blood flow monitoring? J. Appl. Physiol. 104, 905–906 (2008).

    Article  PubMed  Google Scholar 

  45. Kim, C., Song, K.H., Gao, F. & Wang, L.V. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats—volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology 255, 442–450 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Landsman, M.L., Kwant, G., Mook, G.A. & Zijlstra, W.G. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 40, 575–583 (1976).

    Article  CAS  PubMed  Google Scholar 

  47. Mordon, S., Devoisselle, J.M., Soulie-Begu, S. & Desmettre, T. Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc. Res. 55, 146–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Pauli, J. et al. An in vitro characterization study of new near infrared dyes for molecular imaging. Eur. J. Med. Chem. 44, 3496–3503 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Umezawa, K., Citterio, D. & Suzuki, K. Water-soluble NIR fluorescent probes based on squaraine and their application for protein labeling. Anal. Sci. 24, 213–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Sreejith, S., Carol, P., Chithra, P. & Ajayaghosh, A. Squaraine dyes: a mine of molecular materials. J. Mater. Chem. 18, 264 (2008).

    Article  CAS  Google Scholar 

  51. Kim, S.H. et al. Absorption spectra, aggregation and photofading behaviour of near-infrared absorbing squarylium dyes containing perimidine moiety. Dyes Pigments 55, 1–7 (2002).

    Article  CAS  Google Scholar 

  52. Zhang, D. et al. Nano-confined squaraine dye assemblies: new photoacoustic and near-infrared fluorescence dual-modular imaging probes in vivo. Bioconjug. Chem. 25, 2021–2029 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. An, F. et al. Aggregation-induced near-infrared absorption of squaraine dye in an albumin nanocomplex for photoacoustic tomography in vivo. ACS Appl. Mater. Interfaces 6, 17985–17992 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Sreejith, S., Joseph, J., Lin, M., Menon, N.V. & Borah, P. Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9, 5695–5704 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Beija, M., Afonso, C.A.M. & Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 38, 2410–2433 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Morgounova, E., Shao, Q., Hackel, B.J., Thomas, D.D. & Ashkenazi, S. Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes. J. Biomed. Opt. 18, 56004 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Yao, J., Maslov, K., Hu, S. & Wang, L.V. Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. J. Biomed. Opt. 14, 054049 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gabrielli, D., Belisle, E., Severino, D., Kowaltowski, A.J. & Baptista, M.S. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem. Photobiol. 79, 227–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Onoe, S., Temma, T., Kanazaki, K., Ono, M. & Saji, H. Development of photostabilized asymmetrical cyanine dyes for in vivo photoacoustic imaging of tumors. J. Biomed. Opt. 20, 096006 (2015).

    Article  PubMed  Google Scholar 

  60. Reynolds, G.A. & Drexhage, K.H. Stable heptamethine pyrylium dyes that absorb in the infrared. J. Org. Chem. 42, 885–888 (1977).

    Article  CAS  Google Scholar 

  61. Hudson, S.V. et al. Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 74, 6271–6279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Duncan, R. & Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Daniel, M.C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, Y.-S. et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 18, 8867–8878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Willets, K.A. & Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Petryayeva, E. & Krull, U.J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706, 8–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Y.S. et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 11, 348–354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cavigli, L. et al. Size affects the stability of the photoacoustic conversion of gold nanorods. J. Phys. Chem. 118, 16140–16146 (2014).

    CAS  Google Scholar 

  69. Preston, T.C. & Signorell, R. Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer. ACS Nano 3, 3696–3706 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Skrabalak, S.E. et al. Gold nanocages: synthesis, properties and applications. Acc. Chem. Res. 41, 1587–1595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Srivatsan, A. et al. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4, 163–174 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Xie, H. et al. Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int. J. Nanomedicine 6, 259–269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khalili Fard, J., Jafari, S. & Eghbal, M.A. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv. Pharm. Bull. 5, 447–454 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cheng, K. et al. Construction and validation of nano gold tripods for molecular imaging of living subjects. J. Am. Chem. Soc. 136, 3560–3571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, M., Yudasaka, M., Ajima, K., Miyawaki, J. & Iijima, S. Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1, 265–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Krueger, A. & Lang, D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012).

    Article  CAS  Google Scholar 

  77. He, H. & Gao, C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 22, 5054–5064 (2010).

    Article  CAS  Google Scholar 

  78. Bahr, J.L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. de la Zerda, A. et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6, 4694–4701 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Z., Robinson, J.T., Sun, X. & Dai, H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs (b). J. Am. Chem. Soc. 130, 10876–10877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Connell, M.J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Shao, Y. et al. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010).

    Article  CAS  Google Scholar 

  83. Swierczewska, M. et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 12, 3613–3620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vial, S. et al. Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem 9, 2113–2119 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2, 341–350 (2008).

    Article  CAS  Google Scholar 

  86. Carlson, L.J. & Krauss, T.D. Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Bachilo, S.M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. de la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, C. et al. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res. Lett. 9, 264 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. de la Zerda, A. et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10, 2168–2172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seabra, A.B., Paula, A.J., De Lima, R., Alves, O.L. & Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27, 159–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wick, P., Clift, M.J.D., Rösslein, M. & Rothen-Rutishauser, B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. ChemSusChem 4, 905–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Schipper, M.L. et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3, 216–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Saito, N. et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114, 6040–6079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaur, R. & Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int. J. Nanomedicine 8, 203–220 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mochalin, V.N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011).

    Article  PubMed  CAS  Google Scholar 

  98. Zhu, Y. et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2, 302–312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nguyen, T.-Q., Martini, I.B., Liu, J. & Schwartz, B.J. Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104, 237–255 (2000).

    Article  CAS  Google Scholar 

  100. Feng, L. et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42, 6620–6633 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zha, Z. et al. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5, 4462–4467 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Balasundaram, G. et al. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer. Int. J. Nanomedicine 10, 387–397 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lovell, J.F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Ng, K.K. et al. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano 8, 8363–8373 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Huynh, E., Jin, C.S., Wilson, B.C. & Zheng, G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug. Chem. 25, 796–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Huynh, E. et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat. Nanotechnol. 10, 325–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Pan, D. et al. Molecular photoacoustic tomography with colloidal nanobeacons. Angew. Chem. Int. Ed. Engl. 48, 4170–4173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pan, D., Pramanik, M., Wickline, S.A., Wang, L.V. & Lanza, G.M. Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging. Contrast Media Mol. Imaging 6, 378–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, J. et al. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym. Chem. 5, 2854 (2014).

    Article  CAS  Google Scholar 

  112. Pan, D. et al. Rapid synthesis of near infrared polymeric micelles for real-time sentinel lymph node imaging. Adv. Healthc. Mater. 1, 582–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jokerst, J.V., Van de Sompel, D., Bohndiek, S.E. & Gambhir, S.S. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2, 119–127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Miki, K. et al. Near-infrared dye-conjugated amphiphilic hyaluronic acid derivatives as a dual contrast agent for in vivo optical and photoacoustic tumor imaging. Biomacromolecules 16, 219–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Aoki, H., Nojiri, M., Mukai, R. & Ito, S. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging. Nanoscale 7, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, H. et al. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale 6, 14270–14279 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, K. et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. Theranostics 4, 134–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Hembury, M. et al. Gold–silica quantum rattles for multimodal imaging and therapy. Proc. Natl. Acad. Sci. USA 112, 1959–1964 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gong, H. et al. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater. 24, 6492–6502 (2014).

    Article  CAS  Google Scholar 

  121. Cox, B., Laufer, J.G., Arridge, S.R. & Beard, P.C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).

    Article  PubMed  Google Scholar 

  122. Dawidczyk, C.M., Russell, L.M. & Searson, P.C. Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res. 75, 4016–4020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hale, G.M. & Querry, M.R. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl. Opt. 12, 555–563 (1973).

    Article  CAS  PubMed  Google Scholar 

  124. van Veen, R.L.P. et al. Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt. 10, 054004 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Tsai, C.L., Chen, J.C. & Wang, W.J. Near-infrared absorption property of biological soft tissue constituents. J. Med. Biol. Eng. 21, 7–14 (2001).

    Google Scholar 

  126. Lozano, N., Al-Ahmady, Z.S., Beziere, N.S., Ntziachristos, V. & Kostarelos, K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 482, 2–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Eghtedari, M. et al. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 9, 287–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ashkenazi, S. Photoacoustic lifetime imaging of dissolved oxygen using methylene blue. J. Biomed. Opt. 15, 040501 (2010).

    Article  PubMed  CAS  Google Scholar 

  129. Onoe, S., Temma, T., Shimizu, Y., Ono, M. & Saji, H. Investigation of cyanine dyes for in vivo optical imaging of altered mitochondrial membrane potential in tumors. Cancer Med. 3, 775–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kang, N.-Y. et al. A macrophage uptaking near-infrared chemical probe for in vivo imaging of inflammation. Chem. Commun. (Camb.) 50, 6589–6591 (2014).

    Article  CAS  Google Scholar 

  131. Bézière, N. & Ntziachristos, V. Optoacoustic imaging of naphthalocyanine: potential for contrast enhancement and therapy monitoring. J. Nucl. Med. 56, 323–328 (2015).

    Article  PubMed  CAS  Google Scholar 

  132. Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 58, 3–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. de Puig, H., Tam, J.O., Yen, C.-W., Gehrke, L. & Hamad-Schifferli, K. Extinction coefficient of gold nanostars. J. Phys. Chem. C Nanometer Interfaces 119, 17408–17415 (2015).

    Article  CAS  Google Scholar 

  134. Jokerst, J.V., Cole, A.J., Van De Sompel, D. & Gambhir, S.S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6, 10366–10377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Beqa, L., Fan, Z., Singh, A.K., Senapati, D. & Ray, P.C. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces 3, 3316–3324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leonov, A.P. et al. Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2, 2481–2488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu, J. et al. Theranostic Au cubic nano-aggregates as potential photoacoustic contrast and photothermal therapeutic agents. Theranostics 4, 534–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, W. et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 71, 6116–6121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  140. Brongersma, M.L., Halas, N.J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Li, J., Guo, H. & Li, Z. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures. Photonics Res. 1, 28–41 (2013).

    Article  CAS  Google Scholar 

  142. Jain, P.K. & El-Sayed, M.A. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett. 7, 2854–2858 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Hodge, S.A., Bayazit, M.K., Coleman, K.S. & Shaffer, M.S.P. Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 41, 4409 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Baumberg (Department of Physics, University of Cambridge) for helpful discussions on gold nanoparticle LSPR. This work was supported by CRUK (Career Establishment Award no. C47594/A16267 to J.W. and S.E.B., Core Funding C14303/A17197 to J.W. and S.E.B.), the European Commission (CIG FP7-PEOPLE-2013-CIG-630729 to J.W. and S.E.B.), the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465 to J.W. and S.E.B.), King's College London and University College London Comprehensive Cancer Imaging Centre Cancer Research UK & Engineering and Physical Sciences Research Council, in association with the Medical Research Council and the Department of Health, UK (P.B.), and the European Union (project FAMOS FP7 ICT, contract 317744 to P.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul C Beard or Sarah E Bohndiek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Different photoacoustic tomography detection geometries using widefield excitation.

(a) 2D or 3D imaging using a linear or planar array respectively. (b) 3D imaging using hemi-spherical array. (c) 2D or 3D imaging using a circular or cylindrical array.

Supplementary Figure 2 Physiological barriers encountered during molecular imaging.

Design of contrast agents for molecular PAI must consider both circulatory and cellular barriers, as well as the active targeting of cell surface receptors, transporters, metabolic enzymes or biochemical processes to provide the molecular readout.

Supplementary Figure 3 Normalized absorption spectra of near-infrared dyes.

Methylene Blue, ATTO740, AlexaFluor750 (pH 7.2) and IRDye800CW (in PBS). Spectral data from http://www.spectra.arizona.edu/

Supplementary Figure 4 The origin of the optical properties of graphene and carbon nanodiamonds.

(a) Schematic honeycomb structure of a single layer graphene and grapheme oxide sheet. (b) Schematic illustration of the density of electronic states (DOS) with respect to energy for graphene (k = wavevector). (c) Absorption spectra of monolayer graphene and bilayer graphene.1 (d) Schematic illustration of the nanodiamond structure and its nitrogen-vacancies (NV). The NV centers are characterized by electrons (six or five) in dangling orbitals on the three carbon atoms and the nitrogen atom neighboring the vacancy and can be either negatively charged (six electrons) or neutral (five electrons). The combinations and transformation of these orbitals leads to different electronic states which allow strong optical absorption at higher wavelengths. The diamond surface is terminated by functional groups and sp2 carbons to stabilize the particle. (e) Schematic illustration of the energy levels and related absorptions of negatively charged and neutral NV centers (solid lines: electronic energy levels, dashed lines: vibrational energy levels).2 (f) Absorption spectrum of radiation-damaged nanodiamonds suspended in DI water (O.D. = optical density).3

References: 1. Sun, Z. et al. Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). 2. Manson, N. B. & Harrison, J. P. Photo-ionization of the nitrogen-vacancy center in diamond. Diam. Relat. Mater. 14, 1705–1710 (2005). 3. Zhang, T. et al. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance. J. Biomed. Opt. 18(2), 026018–1 – 026018–6 (2013).

Supplementary Figure 5 Absorption spectra of graphene oxide and single-walled carbon nanotubes modified with near-infrared dyes.

(a) Absorption spectra of unmodified graphene oxide (red line) and ICG-graphene oxide.1 (b) Absorption spectra of plain SWNT and with dyes (ICG and QSY) modified SWNT.2

References: 1. Wang, Y.-W. et al. Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J. Mater. Chem. B 1, 5762 (2013). 2. De La Zerda, A. et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6, 4694–4701 (2012).

Supplementary Figure 6 Optical properties of polymer nanoparticles.

(a) Schematic illustration of the components of polymer nanoparticles and the different methods of formulation. In green are the units that allow us to influence the optical properties of the polymer nanoparticles. (b) The effect of the conjugation length, attachment or incorporation of donor and acceptor units, metal complexation and aggregations during PNP formation on the optical properties. HOMO and LUMO stand for the highest occupied and lowest unoccupied molecule orbital. The extension of the conjugation length causes a bathochromic (red) shift. Not shown: sterically hindering substituents influence planarity of the backbone and thus decrease pi-overlap leading to blue shift.1,2 Donor/acceptor interaction leads to a decrease in the band gap yielding in a red shift (especially in close proximity they undergo (partial) intramolecular charge transfer upon excitation).1,3 The integration of a metal center to the porphyrin system influences the optical properties4 mainly due to the interactions of the d-orbitals of the metal with the molecular orbitals of the ligand. This enables ligand-to-metal transitions (LMCT), metal-to-ligand transitions (MLCT), metal-centered (MC) transitions and ligand-centered (LT) transitions. Electrostatic interactions between the conjugated cores lead to superstructures, known as more or less deformed H- or J-aggregates. In respect to the monomers, H-aggregation leads to a blue-shift (hypsochromic) and J-aggregation to a red-shift (bathochromic) of the pi-pi* transition.5

References: 1. Meier, H. Conjugated oligomers with terminal donor-acceptor substitution. Angew. Chemie - Int. Ed. 44, 2482–2506 (2005). 2. Ajayaghosh, A. Donor-acceptor type low band gap polymers: polysquaraines and related systems. Chem. Soc. Rev. 32, 181–191 (2003). 3. Slama-Schwok, a., Blanchard-Desce, M. & Lehn, J. M. Intramolecular charge transfer in donor-acceptor molecules. J. Phys. Chem. 94, 3894–3902 (1990). 4. Ho, I.-T., Sessler, J. L., Gambhir, S. S. & Jokerst, J. V. Parts per billion detection of uranium with a porphyrinoid-containing nanoparticle and in vivo photoacoustic imaging. Analyst 140, 3731–3737 (2015). 5. Pescitelli, G., Di Bari, L. & Berova, N. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 43, 5211–33 (2014).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–4 and Supplementary Notes 1–3 (PDF 8866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, J., Beard, P. & Bohndiek, S. Contrast agents for molecular photoacoustic imaging. Nat Methods 13, 639–650 (2016). https://doi.org/10.1038/nmeth.3929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3929

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer