Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Tracking gene and cell fate for therapeutic gain

The preclinical intersection of molecular imaging and gene- and cell-based therapies will enable more informed and effective clinical translation. We discuss how imaging can monitor cell and gene fate and function in vivo and overcome barriers associated with these therapies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways in gene- and cell-based therapies.

References

  1. Hacein-Bey-Abina, S. et al. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  Google Scholar 

  2. Aiuti, A. et al. N. Engl. J. Med. 360, 447–458 (2009).

    Article  CAS  Google Scholar 

  3. Ott, M. G. et al. Nature Med. 12, 401–409 (2006).

    Article  CAS  Google Scholar 

  4. Cartier, N. et al. Science 326, 818–823 (2009).

    Article  CAS  Google Scholar 

  5. Boztug, K. et al. N. Engl. J. Med. 363, 1918–1927 (2010).

    Article  CAS  Google Scholar 

  6. Hacein-Bey-Abina, S. et al. Science 302, 415–419 (2003).

    Article  CAS  Google Scholar 

  7. Stein, S. et al. Nature Med. 16, 198–204 (2010).

    Article  CAS  Google Scholar 

  8. Howe, S. J. et al. J. Clin. Invest. 118, 3143–3150 (2008).

    Article  CAS  Google Scholar 

  9. Griffin, M. D. et al. Stem Cells 31, 2033–2041 (2013).

    Article  CAS  Google Scholar 

  10. Barry, F. & Murphy, M. Nature Rev. Rheumatol. 9, 584–594 (2013).

    Article  CAS  Google Scholar 

  11. Sheikh, A. Y. et al. Arterioscler. Thromb. Vasc. Biol. 32, 92–102 (2012).

    Article  CAS  Google Scholar 

  12. Menasche, P. et al. Circulation 117, 1189–1200 (2008).

    Article  Google Scholar 

  13. Strauss, S. Nature Biotechnol. 28, 989–990 (2010).

    Article  CAS  Google Scholar 

  14. Schwartz, S. D. et al. Lancet 379, 713–720 (2012).

    Article  CAS  Google Scholar 

  15. Cyranoski, D. Nature 494, 413 (2013).

    Article  CAS  Google Scholar 

  16. Kershaw, M. H., Westwood, J. A. & Hwu, P. Nature Biotechnol. 20, 1221–1227 (2002).

    Article  CAS  Google Scholar 

  17. Yaghoubi, S. S. et al. Nature Clin. Pract. Oncol. 6, 53–58 (2009).

    Article  CAS  Google Scholar 

  18. Takahashi, K. et al. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  19. Dimos, J. T. et al. Science 321, 1218–1221 (2008).

    Article  CAS  Google Scholar 

  20. Ebert, A. D. et al. Nature 457, 277–280 (2009).

    Article  CAS  Google Scholar 

  21. Moretti, A. et al. N. Engl. J. Med. 363, 1397–1409 (2010).

    Article  CAS  Google Scholar 

  22. Lan, F. et al. Cell Stem Cell 12, 101–113 (2013).

    Article  CAS  Google Scholar 

  23. Sun, N. et al. Sci. Transl. Med. 4, 130ra147 (2012).

    Article  Google Scholar 

  24. Mordwinkin, N. M., Lee, A. S. & Wu, J. C. JAMA 310, 2039–2040 (2013).

    Article  CAS  Google Scholar 

  25. Simara, P., Motl, J. A. & Kaufman, D. S. Transl Res. 161, 284–292 (2013).

    Article  CAS  Google Scholar 

  26. Joung, J. K. & Sander, J. D. Nature Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Circ. Res. 111, 1494–1503 (2012).

    Article  CAS  Google Scholar 

  28. De Almeida, P. E., Ransohoff, J. D., Nahid, A. & Wu, J. C. Circ. Res. 112, 549–561 (2013).

    Article  CAS  Google Scholar 

  29. Kooreman, N. G. & Wu, J. C. J. R. Soc. Interface 7 Suppl 6, S753–S763 (2010).

    Google Scholar 

  30. Youn, H. & Chung, J. K. AJR Am. J. Roentgenol. 201, W206–W214 (2013).

    Article  Google Scholar 

  31. Vrtovec, B. et al. Circ. Res. 112, 165–173 (2013).

    Article  CAS  Google Scholar 

  32. Vrtovec, B. et al. Circulation 128, S42–S49 (2013).

    Article  CAS  Google Scholar 

  33. Musialek, P. et al. Circ. Cardiovasc. Imaging 6, 320–328 (2013).

    Article  Google Scholar 

  34. De Vries, I. J. et al. Nature Biotechnol. 23, 1407–1413 (2005).

    Article  CAS  Google Scholar 

  35. Bonetto, F. et al. Int. J. Cancer 129, 365–373 (2011).

    Article  CAS  Google Scholar 

  36. Helfer, B. M. et al. Cytotherapy 12, 238–250 (2010).

    Article  CAS  Google Scholar 

  37. Garber, K. Nature Biotechnol. 31, 483–486 (2013).

    Article  CAS  Google Scholar 

  38. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Nature Med. 19, 998–1004 (2013).

    Article  CAS  Google Scholar 

  39. Higuchi, T. et al. J. Nucl. Med. 50, 1088–1094 (2009).

    Article  CAS  Google Scholar 

  40. Li, Z. et al. Stem Cells 26, 864–873 (2008).

    Article  CAS  Google Scholar 

  41. Amsalem, Y. et al. Circulation 116, I38–I45 (2007).

    Article  CAS  Google Scholar 

  42. Contag, C. H. & Bachmann, M. H. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  43. Kang, W. J. et al. J. Nucl. Med. 47, 1295–1301 (2006).

    Google Scholar 

  44. Schachinger, V. et al. Circulation 118, 1425–1432 (2008).

    Article  Google Scholar 

  45. Templin, C. et al. Circulation 126, 430–439 (2012).

    Article  CAS  Google Scholar 

  46. Doyle, B. et al. J. Nucl. Med. 48, 1708–1714 (2007).

    Article  Google Scholar 

  47. Wehrl, H. F., Judenhofer, M. S., Wiehr, S. & Pichler, B. J. Eur. J. Nucl. Med. Mol. Imaging 36 Suppl 1, S56–S68 (2009).

    Article  Google Scholar 

  48. MacLaren, D. C. et al. Gene Ther. 6, 785–791 (1999).

    Article  CAS  Google Scholar 

  49. Liang, Q. et al. Mol. Ther. 6, 73–82 (2002).

    Article  CAS  Google Scholar 

  50. Kwekkeboom, D. J. et al. Endocr. Relat. Cancer 17, R53–R73 (2010).

    Article  CAS  Google Scholar 

  51. Chung, J. K. J. Nucl. Med. 43, 1188–1200 (2002).

    CAS  Google Scholar 

  52. Black, M. E., Newcomb, T. G., Wilson, H. M. & Loeb, L. A. Proc. Natl Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  53. Wu, J. C. et al. Circulation 108, 1302–1305 (2003).

    Article  Google Scholar 

  54. Cao, F. et al. Circulation 113, 1005–1014 (2006).

    Article  Google Scholar 

  55. Gambhir, S. S. et al. Proc. Natl Acad. Sci. USA 97, 2785–2790 (2000).

    Article  CAS  Google Scholar 

  56. Ward, K. M., Aletras, A. H. & Balaban, R. S. J. Magn. Reson. 143, 79–87 (2000).

    Article  CAS  Google Scholar 

  57. Moore, A., Josephson, L., Bhorade, R. M., Basilion, J. P. & Weissleder, R. Radiology 221, 244–250 (2001).

    Article  CAS  Google Scholar 

  58. Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. Nature Med. 11, 450–454 (2005).

    Article  CAS  Google Scholar 

  59. Louie, A. Y. et al. Nature Biotechnol. 18, 321–325 (2000).

    Article  CAS  Google Scholar 

  60. Gilad, A. A. et al. Nature Biotechnol. 25, 217–219 (2007).

    Article  CAS  Google Scholar 

  61. Bar-Shir, A. et al. ACS Chem. Biol. http://pubs.acs.org/doi/abs/10.1021/cb400617q (2013).

  62. McMahon, M. T. et al. Magn. Reson. Med. 60, 803–812 (2008).

    Article  CAS  Google Scholar 

  63. Liu, G. et al. Magn. Reson. Med. 67, 1106–1113 (2012).

    Article  CAS  Google Scholar 

  64. Qin, C. et al. Sci. Rep. 3, 1490 (2013).

    Article  CAS  Google Scholar 

  65. Horii, T., Tamura, D., Morita, S., Kimura, M. & Hatada, I. Int. J. Mol. Sci. 14, 19774–19781 (2013).

    Article  CAS  Google Scholar 

  66. Yusa, K. et al. Nature 478, 391–394 (2011).

    Article  CAS  Google Scholar 

  67. Sebastiano, V. et al. Stem Cells 29, 1717–1726 (2011).

    Article  CAS  Google Scholar 

  68. Soldner, F. et al. Cell 146, 318–331 (2011).

    Article  CAS  Google Scholar 

  69. Zhu, J., Zhou, L. & XingWu, F. N. Engl. J. Med. 355, 2376–2378 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from NIH R01 HL093172, NIH R01 EB009689, NIH R01 HL095571, CIRM DR2-05394 and CIRM TR3-05556 (J.C.W).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Joseph C. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kooreman, N., Ransohoff, J. & Wu, J. Tracking gene and cell fate for therapeutic gain. Nature Mater 13, 106–109 (2014). https://doi.org/10.1038/nmat3868

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3868

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research