Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticles that communicate in vivo to amplify tumour targeting

Abstract

Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of ‘signalling’ modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted ‘receiving’ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoparticles communication for amplified tumour targeting.
Figure 2: ‘Signalling’ component characterization.
Figure 3: ‘Receiving’-component synthesis and testing.
Figure 4: Amplified tumour targeting with two systems of communicating NPs.
Figure 5: Amplified tumour therapy with communicating NPs.

Similar content being viewed by others

References

  1. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  2. Park, J. H. et al. Magnetic iron oxide nanoworms for tumour targeting and imaging. Adv. Mater. 20, 1630–1630 (2008).

    Article  CAS  Google Scholar 

  3. Xia, Y. N. & Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338–344 (2005).

    Article  CAS  Google Scholar 

  4. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  Google Scholar 

  5. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    Article  CAS  Google Scholar 

  6. Park, J. H., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed. 47, 7284–7288 (2008).

    Article  CAS  Google Scholar 

  7. Litzinger, D. C. & Huang, L. Phosphatidylethanolamine liposomes—drug delivery, gene-transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1113, 201–227 (1992).

    Article  CAS  Google Scholar 

  8. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569 (2008).

    Article  CAS  Google Scholar 

  9. Anderson, D. G., Lynn, D. M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42, 3153–3158 (2003).

    Article  CAS  Google Scholar 

  10. Leserman, L. D., Barbet, J., Kourilsky, F. & Weinstein, J. N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288, 602–604 (1980).

    Article  CAS  Google Scholar 

  11. Heath, T. D., Fraley, R. T. & Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science 210, 539–541 (1980).

    Article  CAS  Google Scholar 

  12. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  13. Hood, J. D. et al. Tumour regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002).

    Article  CAS  Google Scholar 

  14. Farokhzad, O. C. et al. Nanoparticle–aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

    Article  CAS  Google Scholar 

  15. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  Google Scholar 

  16. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  17. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  18. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Progr. Lipid Res. 42, 463–478 (2003).

    Article  CAS  Google Scholar 

  19. Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    Article  CAS  Google Scholar 

  20. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  Google Scholar 

  21. Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    Article  CAS  Google Scholar 

  22. Kong, G., Braun, R. D. & Dewhirst, M. W. Hyperthermia enables tumour-specific nanoparticle delivery: Effect of particle size. Cancer Res. 60, 4440–4445 (2000).

    CAS  Google Scholar 

  23. von Maltzahn, G. et al. Computationally-guided photothermal tumour therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009).

    Article  CAS  Google Scholar 

  24. Hashizume, H. et al. Openings between defective endothelial cells explain tumour vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    Article  CAS  Google Scholar 

  25. Maeda, H. The enhanced permeability and retention (EPR) effect in tumour vasculature: The key role of tumour-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).

    Article  CAS  Google Scholar 

  26. Weissleder, R. A clearer vision for in vivo imaging. Nature Biotechnol. 19, 316–317 (2001).

    Article  CAS  Google Scholar 

  27. Kessler, T. et al. Inhibition of tumour growth by RGD peptide-directed delivery of truncated tissue factor to the tumour vasculature. Clin. Cancer Res. 11, 6317–6324 (2005).

    Article  CAS  Google Scholar 

  28. Bieker, R. et al. Infarction of tumour vessels by NGR-peptide directed targeting of tissue factor. Experimental results and first-in-man experience. Blood 113, 5019–5027 (2009).

    Article  CAS  Google Scholar 

  29. Huang, X. M. et al. Tumour infarction in mice by antibody-directed targeting of tissue factor to tumour vasculature. Science 275, 547–550 (1997).

    Article  CAS  Google Scholar 

  30. El-Sheikh, A., Borgstrom, P., Bhattacharjee, G., Belting, M. & Edgington, T. S. A selective tumour microvasculature thrombogen that targets a novel receptor complex in the tumour angiogenic microenvironment. Cancer Res. 65, 11109–11117 (2005).

    Article  CAS  Google Scholar 

  31. Persigehl, T. et al. Antiangiogenic tumour treatment: Early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244, 449–456 (2007).

    Article  Google Scholar 

  32. Paborsky, L. R., Caras, I. W., Fisher, K. L. & Gorman, C. M. Lipid association, but not the transmembrane domain, is required for tissue factor activity. Substitution of the transmembrane domain with a phosphatidylinositol anchor. J. Biol. Chem. 266, 21911–21916 (1991).

    CAS  Google Scholar 

  33. Jaffer, F. A. et al. Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110, 170–176 (2004).

    Article  CAS  Google Scholar 

  34. Tung, C. H. et al. Novel factor XIII probes for blood coagulation imaging. Chembiochem 4, 897–899 (2003).

    Article  CAS  Google Scholar 

  35. Overoye-Chan, K. et al. EP-2104R: A fibrin-specific gadolinium-based MRI contrast agent for detection of thrombus. J. Am. Chem. Soc. 130, 6025–6039 (2008).

    Article  CAS  Google Scholar 

  36. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nature Biotechnol. 24, 545–554 (2006).

    Article  CAS  Google Scholar 

  37. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    Article  CAS  Google Scholar 

  38. Jungmann, R., Renner, S. & Simmel, F. C. From DNA nanotechnology to synthetic biology. HFSP J. 2, 99–109 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute of the National Institutes of Health through grant numbers U54 CA 119335 (UCSD CCNE), 5-R01-CA124427 (Bioengineering Research Partnerships, BRP), U54 CA119349 (MIT CCNE) and 5 P30 CA30199-28 (SBMRI Cancer Center Support Grant). Work in the Muenster laboratory is supported by Deutsche Forschungsgemeinschaft (SFB 656/C8 Mesters) and German Cancer Aid (109245 Berdel). G.v.M. acknowledges support from Whitaker and NSF Graduate Fellowship. The authors thank P. Caravan for assistance with the fibrin-binding peptide selection and testing, D. Kim, S. Mo, L. Ong and M. Xu for assistance with in vivo studies and R. Weissleder for assistance with preliminary fluorescent imaging studies.

Author information

Authors and Affiliations

Authors

Contributions

G.v.M. and S.N.B. conceived the communication strategy, analysed results and wrote the manuscript; G.v.M., J-H.P., K.Y.L. and N.S. designed and carried out experiments; C.S., R.M., W.E.B., E.R. and M.J.S. contributed reagents and technical expertise.

Corresponding author

Correspondence to Sangeeta N. Bhatia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Maltzahn, G., Park, JH., Lin, K. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater 10, 545–552 (2011). https://doi.org/10.1038/nmat3049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing