Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts

Abstract

Transplantation of adult bone marrow–derived mesenchymal stem cells has been proposed as a strategy for cardiac repair following myocardial damage. However, poor cell viability associated with transplantation has limited the reparative capacity of these cells in vivo. In this study, we genetically engineered rat mesenchymal stem cells using ex vivo retroviral transduction to overexpress the prosurvival gene Akt1 (encoding the Akt protein). Transplantation of 5 × 106 cells overexpressing Akt into the ischemic rat myocardium inhibited the process of cardiac remodeling by reducing intramyocardial inflammation, collagen deposition and cardiac myocyte hypertrophy, regenerated 80–90% of lost myocardial volume, and completely normalized systolic and diastolic cardiac function. These observed effects were dose (cell number) dependent. Mesenchymal stem cells transduced with Akt1 restored fourfold greater myocardial volume than equal numbers of cells transduced with the reporter gene lacZ. Thus, mesenchymal stem cells genetically enhanced with Akt1 can repair infarcted myocardium, prevent remodeling and nearly normalize cardiac performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunocytochemical characterization of MSCs.
Figure 2: Effect of Akt1 transduction in MSC.
Figure 3: Analysis of myocardial repair 3 weeks after MSC injection into ischemic rat hearts.
Figure 4: Injection of MSCs into ischemic rat heart reduced infarct volume.
Figure 5: MSC injection improved cardiac function.
Figure 6: Injection of MSCs inhibits ventricular remodeling.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Williams, R.S. & Benjamin, I.J. Protective responses in the ischemic myocardium. J. Clin. Invest. 106, 813–818 (2000).

    Article  CAS  Google Scholar 

  2. Pfeffer, J.M., Pfeffer, M.A., Fletcher, P.J. & Braunwald, E. Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260, H1406–1414 (1991).

    CAS  PubMed  Google Scholar 

  3. Beltrami, A.P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001).

    Article  CAS  Google Scholar 

  4. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  Google Scholar 

  5. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  Google Scholar 

  6. Tomita, S. et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II247–256 (1999).

    Article  CAS  Google Scholar 

  7. Wang, J.S. et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J. Thorac. Cardiovasc. Surg. 120, 999–1005 (2000).

    Article  CAS  Google Scholar 

  8. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  Google Scholar 

  9. Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

    Article  CAS  Google Scholar 

  10. Kawamoto, A. et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103, 634–637 (2001).

    Article  CAS  Google Scholar 

  11. Pereira, R.F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92, 4857–4861 (1995).

    Article  CAS  Google Scholar 

  12. Azizi, S.A. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913 (1998).

    Article  CAS  Google Scholar 

  13. Chen, J. et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J. Neurol. Sci. 189, 49–57 (2001).

    Article  CAS  Google Scholar 

  14. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  Google Scholar 

  15. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705 (1999).

    Article  CAS  Google Scholar 

  16. Toma, C. et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  Google Scholar 

  17. Shake, J.G. et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73, 1919–1925, 1926 (2002).

    Article  Google Scholar 

  18. Reinecke, H., Zhang, M., Bartosek, T. & Murry, C.E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

    Article  CAS  Google Scholar 

  19. Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907–921 (2001).

    Article  CAS  Google Scholar 

  20. Muller-Ehmsen, J. et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol. 34, 107–116 (2002).

    Article  Google Scholar 

  21. Franke, T.F., Kaplan, D.R. & Cantley, L.C. PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437 (1997).

    Article  CAS  Google Scholar 

  22. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  23. Colter, D.C., Class, R., DiGirolamo, C.M. & Prockop, D.J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA 97, 3213–3218 (2000).

    Article  CAS  Google Scholar 

  24. Hunnestad, J.A., Steen, R., Tjonnfjord, G.E. & Egeland, T. Thrombopoietin combined with early-acting growth factors effectively expands human hematopoietic progenitor cells in vitro. Stem Cells 17, 31–38 (1999).

    Article  CAS  Google Scholar 

  25. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  Google Scholar 

  26. Ying, Q.L., Nichols, J., Evans, E.P. & Smith, A.G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    Article  CAS  Google Scholar 

  27. Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998).

    Article  CAS  Google Scholar 

  28. Murry, C.E., Wiseman, R.W., Schwartz, S.M. & Hauschka, S.D. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512–2523 (1996).

    Article  CAS  Google Scholar 

  29. Atkins, B.Z. et al. Cellular cardiomyoplasty improves diastolic properties of injured heart. J. Surg. Res. 85, 234–242 (1999).

    Article  CAS  Google Scholar 

  30. Menasche, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  CAS  Google Scholar 

  31. Reinecke, H., MacDonald, G.H., Hauschka, S.D. & Murry, C.E. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell. Biol. 149, 731–740 (2000).

    Article  CAS  Google Scholar 

  32. Reinecke, H. & Murry, C.E. Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? Cardiovasc. Pathol. 9, 337 (2000).

    Article  CAS  Google Scholar 

  33. Li, R.K. et al. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96, II-179–186, 186–177 (1997).

    Google Scholar 

  34. Watanabe, E. et al. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant. 7, 239–246 (1998).

    Article  CAS  Google Scholar 

  35. Min, J.Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296 (2002).

    Article  Google Scholar 

  36. Fujio, Y. et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101, 660–667 (2000).

    Article  CAS  Google Scholar 

  37. Matsui, T. et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896–22901 (2002).

    Article  CAS  Google Scholar 

  38. Fukumoto, S. et al. Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem. 276, 17479–17483 (2001).

    Article  CAS  Google Scholar 

  39. Melo, L.G. et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105, 602–607 (2002).

    Article  CAS  Google Scholar 

  40. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

    Article  CAS  Google Scholar 

  41. Nwogu, J. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    Article  CAS  Google Scholar 

  42. Choukroun, G. et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398 (1999).

    Article  CAS  Google Scholar 

  43. Spindler, M. et al. Diastolic dysfunction and altered energetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  Google Scholar 

  44. Okano, J. et al. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J. Biol. Chem. 275, 30934–30942 (2000).

    Article  CAS  Google Scholar 

  45. Teruel, T., Hernandez, R. & Lorenzo, M. Ceramide mediates insulin resistance by tumor necrosis factor-α in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 50, 2563–2571 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.G. Phinney, D.J. Prockop and R. Pratt for helpful discussions and assistance in establishing culture conditions for propagation of bone marrow–derived MSCs; M.A. Perrella for sharing Akt1 constructs and for helpful discussions on Akt biology; and S. Colgan for the use of a hypoxia chamber. This work was supported by grants HL35610 (V.J.D.), HL058516 (V.J.D.), HL072010 (V.J.D.), HL073219 (V.J.D.) and HL52320 (J.S.I.) from the National Heart, Lung and Blood Institute, US National Institutes of Health. A.A.M. is the recipient of a National Research Service Award (1 F32 NHL 10503-01) from the National Heart, Lung and Blood Institute, National Institutes of Health; and the Robert R. Linton Research Fellowship from the Department of Surgery, Massachusetts General Hospital. N.N. is a recipient of a scholarship from the Canadian Institutes of Health Research. M.R. is the recipient of an American Heart Association Research Award (0120195T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J Dzau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangi, A., Noiseux, N., Kong, D. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9, 1195–1201 (2003). https://doi.org/10.1038/nm912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing