Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease

Abstract

Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cognitive outcome, MMSE.
Figure 2: Cognitive outcome, ADAS-Cog.
Figure 3: PET scans.
Figure 4: Trophic response to NGF in the human brain.

Similar content being viewed by others

References

  1. Hefti, F. Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci. 6, 2155–2162 (1986).

    Article  CAS  Google Scholar 

  2. Fischer, W. et al. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–68 (1987).

    Article  CAS  Google Scholar 

  3. Tuszynski, M.H., U, H.S., Amaral, D.G. & Gage, F.H. Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10, 3604–3614 (1990).

    Article  CAS  Google Scholar 

  4. Emerich, D.W. et al. Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: Rescue and sprouting of degenerating cholinergic basal forebrain neurons. J. Comp. Neurol. 349, 148–164 (1994).

    Article  CAS  Google Scholar 

  5. Cooper, J.D. et al. Failed retrograde transport of NGF in a mouse model of Down's syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc. Natl. Acad. Sci. USA 98, 10439–10444 (2001).

    Article  CAS  Google Scholar 

  6. Capsoni, S., Giannotta, S. & Cattaneo, A. Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc. Natl. Acad. Sci. USA 99, 12432–12437 (2002).

    Article  CAS  Google Scholar 

  7. Tuszynski, M.H. Gene therapy for neurodegenerative disorders. Lancet Neurol. 1, 51–57 (2002).

    Article  Google Scholar 

  8. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  Google Scholar 

  9. Bartus, R., Dean, R.L., Beer, C. & Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–417 (1982).

    Article  CAS  Google Scholar 

  10. Mesulam, M.M. & Geula, C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol. 275, 216–240 (1988).

    Article  CAS  Google Scholar 

  11. Kilgard, M.P. & Merzenich, M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    Article  CAS  Google Scholar 

  12. Conner, J.M., Culberson, A., Packowski, C., Chiba, A., Tuszynski, M.H. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38, 819–829 (2003).

    Article  CAS  Google Scholar 

  13. Perry, E.K. et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Brit. Med. J. 2, 1457–1459 (1978).

    Article  CAS  Google Scholar 

  14. Rosenberg, M.B. et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578 (1988).

    Article  CAS  Google Scholar 

  15. Chen, K.S. & Gage, F.H. Somatic gene transfer of NGF to the aged brain: Behavioral and morphological amelioration. J. Neurosci. 15, 2819–2825 (1995).

    Article  CAS  Google Scholar 

  16. Tuszynski, M.H., Roberts, J., Senut, M.C., U, H.-S. & Gage, F.H. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Therapy 3, 305–314 (1996).

    CAS  PubMed  Google Scholar 

  17. Smith, D.E., Roberts, J., Gage, F.H., Tuszynski, M.H. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc. Nat. Acad. Sci. USA 96, 10893–10898 (1999).

    Article  CAS  Google Scholar 

  18. Conner, J.M., Darracq, M.A., Roberts, J., Tuszynski, M.H. Non-tropic actions of neurotrophins: Subcortical NGF gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc. Natl. Acad. Sci. USA 98, 1941–1946 (2001).

    Article  CAS  Google Scholar 

  19. Tuszynski, M.H. & Gage, F.H. Bridging grafts and transient NGF infusions promote long-term CNS neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. USA 92, 4621–4625 (1995).

    Article  CAS  Google Scholar 

  20. Stern, R.G. et al. A longitudinal study of Alzheimer's disease: measurement, rate, and predictors of cognitive deterioration. Am. J. Psychiatry 151, 390–396 (1994).

    Article  CAS  Google Scholar 

  21. Thal, L.J. et al. Idebenone treatment fails to slow cognitive decline in Alzheimer's disease. Neurology 61, 1498–1502 (2003).

    Article  CAS  Google Scholar 

  22. Potkin, S.G. et al. Brain metabolic and clinical effects of rivastigmine in Alzheimer's disease. Int. J. Neuropsychopharmacol. 4, 223–230 (2001).

    Article  CAS  Google Scholar 

  23. Molinari, M., Filippini, V. & Leggio, M.G. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience 111, 863–870 (2002).

    Article  CAS  Google Scholar 

  24. Gottwald, B., Mihajlovic, Z., Wilde, B. & Mehdorn, H.M. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41, 1452–1460 (2003).

    Article  Google Scholar 

  25. Lyons, K.E., Wilkinson, S.B., Overman, J. & Pahwa, R. Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology 63, 612–616 (2004).

    Article  Google Scholar 

  26. Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 9, 246–257 (1998).

    Article  CAS  Google Scholar 

  27. Mayeux, R., Sano M. Treatment of Alzheimer's disease. N. Engl. J. Med. 341, 1670–1679 (1999).

    Article  CAS  Google Scholar 

  28. Masliah, E. et al. Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci. Lett. 174, 67–72 (1994).

    Article  CAS  Google Scholar 

  29. Mesulam, M. The cholinergic lesion of Alzheimer's disease: pivotal factor or side show? Learn. Mem. 11, 43–49 (2004).

    Article  Google Scholar 

  30. Selkoe, D.J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).

    Article  CAS  Google Scholar 

  31. Gill, S.S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Article  CAS  Google Scholar 

  32. Slevin, J.T., Gerhardt, G.A., Smith, C.D., Gash, D.M., Kryscio, R.J. & Young, A.B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line–derived neurotrophic factor. J. Neurosurg. 102, 216–222 (2005).

    Article  CAS  Google Scholar 

  33. McKhann, G. et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34, 939–944 (1984).

    Article  CAS  Google Scholar 

  34. Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    Article  CAS  Google Scholar 

  35. Rosen, W.G., Mohs, R.C., et al. A new rating scale for Alzheimer's disease. Am. J. Psychiatry 141, 1356–1364 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the pioneering work of F. Gage in laying the foundation for this clinical program. We thank B. Hempstead for providing proNGF and antibody, T. Mead for performing immunoelectrophoresis and R. Bartus for helpful advice. Supported by the Shiley Family Foundation and the Institute for the Study of Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H Tuszynski.

Ethics declarations

Competing interests

Mark H. Tuszynski, Armin Blesch and Jeffrey H. Kordower are scientific founders of Ceregene, Inc. None of these individuals participated in subject selection, or in assessment of safety and efficacy.

Supplementary information

Supplementary Fig. 1

Using immunoelectrophoresis and comparison to known quantities of loaded proNGF and NGF, the ratio of proNGF:NGF was less than 1:100. (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuszynski, M., Thal, L., Pay, M. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11, 551–555 (2005). https://doi.org/10.1038/nm1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing