Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration

Abstract

Emerging evidence suggests that bone marrow–derived endothelial, hematopoietic stem and progenitor cells contribute to tissue vascularization during both embryonic and postnatal physiological processes. Recent preclinical and pioneering clinical studies have shown that introduction of bone marrow–derived endothelial and hematopoietic progenitors can restore tissue vascularization after ischemic events in limbs, retina and myocardium. Corecruitment of angiocompetent hematopoietic cells delivering specific angiogenic factors facilitates incorporation of endothelial progenitor cells (EPCs) into newly sprouting blood vessels. Identification of cellular mediators and tissue-specific chemokines, which facilitate selective recruitment of bone marrow–derived stem and progenitor cells to specific organs, will open up new avenues of research to accelerate organ vascularization and regeneration. In addition, identification of factors that promote differentiation of the progenitor cells will permit functional incorporation into neo-vessels of specific tissues while diminishing potential toxicity to other organs. In this review, we discuss the clinical potential of vascular progenitor and stem cells to restore long-lasting organ vascularization and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic and functional identification of human and mouse endothelial progenitors.
Figure 2: Molecular switches involved in the mobilization and recruitment of endothelial, lymphatic and hematopoietic stem and progenitor cells.
Figure 3: Cross-talk between EPCs, CEPs, HSCs and HPCs.
Figure 4: Route of delivery of stem cells for tissue revascularization.
Figure 5: Ex vivo expansion of transplantable EPCs, CEPs, HSC and HPCs.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  2. Folkman, J. Therapeutic angiogenesis in ischemic limbs. Circulation 97, 1108–1110 (1998).

    CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  4. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    CAS  PubMed  Google Scholar 

  5. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    CAS  PubMed  Google Scholar 

  6. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  7. Pepper, M.S. Manipulating angiogenesis. From basic science to the bedside. Arterioscler. Thromb. Vasc. Biol. 17, 605–619 (1997).

    CAS  PubMed  Google Scholar 

  8. Isner, J.M. Myocardial gene therapy. Nature 415, 234–239 (2002).

    CAS  PubMed  Google Scholar 

  9. Khurana, R. & Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116–122 (2003).

    CAS  PubMed  Google Scholar 

  10. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    CAS  PubMed  Google Scholar 

  11. Carmeliet, P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat. Med. 6, 1102–1103 (2000).

    CAS  PubMed  Google Scholar 

  12. Majka, S.M. et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J. Clin. Invest. 111, 71–79 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  14. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).

    CAS  PubMed  Google Scholar 

  15. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow–derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwaguro H. et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105, 732–738 (2002).

    CAS  PubMed  Google Scholar 

  17. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schatteman, G.C., Hanlon, H.D., Jiao, C., Dodds, S.G. & Christy, B.A. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest. 106, 571–578 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 87, 728–730 (2000).

    CAS  PubMed  Google Scholar 

  20. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow–derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    CAS  PubMed  Google Scholar 

  21. Luttun, A., Carmeliet, G. & Carmeliet, P. Vascular progenitors: from biology to treatment. Trends Cardiovasc. Med. 12, 88–96 (2002).

    CAS  PubMed  Google Scholar 

  22. Rafii, S. Circulating endothelial precursors: mystery, reality, and promise. J. Clin. Invest. 105, 17–19 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    CAS  PubMed  Google Scholar 

  24. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

    CAS  PubMed  Google Scholar 

  26. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Edelberg, J.M., Tang, L., Hattori, K., Lyden, D. & Rafii, S. Young adult bone marrow–derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 90, E89–E93 (2002).

    CAS  PubMed  Google Scholar 

  28. Shi, Q. et al. Evidence for circulating bone marrow–derived endothelial cells. Blood 92, 362–367 (1998).

    CAS  PubMed  Google Scholar 

  29. Bhattacharya, V. et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34+ bone marrow cells. Blood 95, 581–585 (2000).

    CAS  PubMed  Google Scholar 

  30. Kaushal, S. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7, 1035–1040 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Noishiki, Y., Tomizawa, Y., Yamane, Y. & Matsumoto, A. Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat. Med. 2, 90–93 (1996).

    CAS  PubMed  Google Scholar 

  32. Sata, M. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med. 8, 403–409 (2002).

    CAS  PubMed  Google Scholar 

  33. Otani, A. et al. Bone marrow derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat. Med. 8, 1004–1010 (2002).

    CAS  PubMed  Google Scholar 

  34. Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).

    CAS  PubMed  Google Scholar 

  35. Crisa, L. et al. Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis. Blood 94, 3928–3940 (1999).

    CAS  PubMed  Google Scholar 

  36. Young, P.P., Hofling, A.A. & Sands, M.S. VEGF increases engraftment of bone marrow–derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc. Natl. Acad. Sci. USA 99, 11951–11956 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  38. Reyes, M. et al. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337–346 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore, M.A. Putting the neo into neoangiogenesis. J. Clin. Invest. 109, 313–315 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gehling, U.M. et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95, 3106–3112 (2000).

    CAS  PubMed  Google Scholar 

  41. Marchetti, S. et al. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J. Cell. Sci. 115, 2075–2085 (2002).

    CAS  PubMed  Google Scholar 

  42. Davidoff, A.M. et al. Bone marrow–derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res. 7, 2870–2879 (2001).

    CAS  PubMed  Google Scholar 

  43. Segal, M.S., Bihorac, A. & Koc, M. Circulating endothelial cells: tea leaves for renal disease. Am. J. Physiol. Renal Physiol. 283, F11–F19 (2002).

    CAS  PubMed  Google Scholar 

  44. Mutunga, M. et al. Circulating endothelial cells in patients with septic shock. Am. J. Respir. Crit. Care Med. 163, 195–200 (2001).

    CAS  PubMed  Google Scholar 

  45. George, F. et al. Rapid isolation of human endothelial cells from whole blood using S-Endo1 monoclonal antibody coupled to immuno-magnetic beads: demonstration of endothelial injury after angioplasty. Thromb. Haemost. 67, 147–153 (1992).

    CAS  PubMed  Google Scholar 

  46. George, F. et al. Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody. J. Immunol. Meth. 139, 65–75 (1991).

    CAS  Google Scholar 

  47. Drancourt, M., George, F., Brouqui, P., Sampol, J. & Raoult, D. Diagnosis of Mediterranean spotted fever by indirect immunofluorescence of Rickettsia conorii in circulating endothelial cells isolated with monoclonal antibody-coated immunomagnetic beads. J. Infect. Dis. 166, 660–663 (1992).

    CAS  PubMed  Google Scholar 

  48. Shi, Q. et al. Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog. J. Vasc. Surg. 20, 546–557 (1994).

    CAS  PubMed  Google Scholar 

  49. Bergers, G., Javaherian, K., Lo, K.M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  50. Solovey, A. et al. Circulating activated endothelial cells in sickle cell anemia. N. Engl. J. Med. 337, 1584–1590 (1997).

    CAS  PubMed  Google Scholar 

  51. Lin, Y., Weisdorf, D.J., Solovey, A. & Hebbel, R.P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  53. Coffin, J.D., Harrison, J., Schwartz, S. & Heimark, R. Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev. Biol. 148, 51–62 (1991).

    CAS  PubMed  Google Scholar 

  54. Caprioli, A., Jaffredo, T., Gautier, R., Dubourg, C. & Dieterlen-Lievre, F. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc. Natl. Acad. Sci. USA 95, 1641–1646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmeisser, A. et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc. Res. 49, 671–680 (2001).

    CAS  PubMed  Google Scholar 

  56. Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood endothelial progenitor cells are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

    PubMed  Google Scholar 

  57. Solovey, A.N. et al. Identification and functional assessment of endothelial P1H12. J. Lab. Clin. Med. 138, 322–331 (2001).

    CAS  PubMed  Google Scholar 

  58. Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer 2, 826–835 (2002).

    CAS  PubMed  Google Scholar 

  59. Shi, Q., Bhattacharya, V., Hong-De Wu, M. & Sauvage, L.R. Utilizing granulocyte colony-stimulating factor to enhance vascular graft endothelialization from circulating blood cells. Ann. Vasc. Surg. 16, 314–320 (2002).

    PubMed  Google Scholar 

  60. Yin, A.H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    CAS  PubMed  Google Scholar 

  61. Miraglia, S. et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021 (1997).

    CAS  PubMed  Google Scholar 

  62. Quirici, N. et al. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br. J. Haematol. 115, 186–194 (2001).

    CAS  PubMed  Google Scholar 

  63. Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K. & Rafii, S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101, 168–172 (2003).

    CAS  PubMed  Google Scholar 

  64. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000).

    CAS  PubMed  Google Scholar 

  65. Schuh, A.C., Faloon, P., Hu, Q.L., Bhimani, M. & Choi, K. In vitro hematopoietic and endothelial potential of flk-1(−/−) embryonic stem cells and embryos. Proc. Natl. Acad. Sci. USA 96, 2159–2164 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hatzopoulos, A.K., Folkman, J., Vasile, E., Eiselen, G.K. & Rosenberg, R.D. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125, 1457–1468 (1998).

    CAS  PubMed  Google Scholar 

  67. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391–4396 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  69. Rafii, S. et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Ann. Thorac. Surg. 60, 1627–1632 (1995).

    CAS  PubMed  Google Scholar 

  70. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rabbany, S.Y., Heissig, B., Hattori, K. & Rafii, S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol. Med. 9, 109–117 (2003).

    CAS  PubMed  Google Scholar 

  73. Gill, M. et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ. Res. 88, 167–174 (2001).

    CAS  PubMed  Google Scholar 

  74. Vasa, M. et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103, 2885–2890 (2001).

    CAS  PubMed  Google Scholar 

  75. Shintani, S. et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103, 2776–2779 (2001).

    CAS  PubMed  Google Scholar 

  76. Rafii, S., Heissig, B. & Hattori, K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther. 9, 631–641 (2002).

    CAS  PubMed  Google Scholar 

  77. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eriksson, U. & Alitalo, K. VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies. Nat. Med. 8, 775–777 (2002).

    CAS  PubMed  Google Scholar 

  79. Dahlqvist, K., Umemoto, E.Y., Brokaw, J.J., Dupuis, M. & McDonald, D.M. Tissue macrophages associated with angiogenesis in chronic airway inflammation in rats. Am. J. Respir. Cell. Mol. Biol. 20, 237–247 (1999).

    CAS  PubMed  Google Scholar 

  80. Ezaki, T. et al. Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation. Am. J. Pathol. 158, 2043–2055 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. McDonald, D.M. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Respir. Crit. Care Med. 164, S39–S45 (2001).

    CAS  PubMed  Google Scholar 

  82. DiPietro, L.A. & Polverini, P.J. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am. J. Pathol. 143, 678–684 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Polverini, P.J. & Leibovich, S.J. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Invest. 51, 635–642 (1984).

    CAS  PubMed  Google Scholar 

  84. Polverini, P.J., Cotran, P.S., Gimbrone, M.A., Jr. & Unanue, E.R. Activated macrophages induce vascular proliferation. Nature 269, 804–806 (1977).

    CAS  PubMed  Google Scholar 

  85. Leibovich, S.J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329, 630–632 (1987).

    CAS  PubMed  Google Scholar 

  86. Mohle, R., Green, D., Moore, M.A., Nachman, R.L. & Rafii, S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA 94, 663–668 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Salven, P., Hattori, K., Heissig, B. & Rafii, S. Interleukin-1α promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J. 16, 1471–1473 (2002).

    CAS  PubMed  Google Scholar 

  88. Pintucci, G. et al. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb. Haemost. 88, 834–842 (2002).

    PubMed  Google Scholar 

  89. Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. Hematopoiesis and angiogenesis: a link between two apparently independent processes. J. Hematother. Stem Cell Res. 9, 13–19 (2000).

    CAS  PubMed  Google Scholar 

  90. Tordjman, R. et al. Erythroblasts are a source of angiogenic factors. Blood 97, 1968–1974 (2001).

    CAS  PubMed  Google Scholar 

  91. Wartiovaara, U. et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb. Haemost. 80, 171–175 (1998).

    CAS  PubMed  Google Scholar 

  92. Huang, Y.Q., Li, J.J. & Karpatkin, S. Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood 95, 1993–1999 (2000).

    CAS  PubMed  Google Scholar 

  93. Coussens, L.M., Tinkle, C.L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209 (2000).

    CAS  PubMed  Google Scholar 

  95. Abtahian, F. et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299, 247–251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rafii, S. & Skobe, M. Splitting vessels: keeping lymph apart from blood. Nat. Med. 9, 166–168 (2003).

    CAS  PubMed  Google Scholar 

  97. Hess, D.C. et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33, 1362–1368 (2002).

    PubMed  Google Scholar 

  98. Zhang, Z.G., Zhang, L., Jiang, Q. & Chopp, M. Bone marrow–derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ. Res. 90, 284–288 (2002).

    CAS  PubMed  Google Scholar 

  99. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    CAS  PubMed  Google Scholar 

  100. Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA 100, 4754–4759 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hill, J.M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    PubMed  Google Scholar 

  102. Hillebrands, J.L., Klatter, F.A., van den Hurk Popa, E.R., Nieuwenhuis, P. & Rozing, J. Origin of neointimal endothelium and α-actin-positive smooth muscle cells in transplant arteriosclerosis. J. Clin. Invest. 107, 1411–1422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hillebrands, J.L., Klatter, F.A., van Dijk W,D. & Rozing, J. Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nat. Med. 8, 194–195 (2002).

    PubMed  Google Scholar 

  104. Shimizu, K. et al. Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat. Med. 7, 738–741 (2001).

    CAS  PubMed  Google Scholar 

  105. Hu, Y. et al. Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106, 1834–1839 (2002).

    PubMed  Google Scholar 

  106. Hillebrands, J.L., Klatter, F.A. & Rozing, J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 380–387 (2003).

    CAS  PubMed  Google Scholar 

  107. Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    CAS  PubMed  Google Scholar 

  108. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow–derived stem cell. Cell 105, 369–377 (2001).

    CAS  PubMed  Google Scholar 

  109. Walter, D.H. et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow–derived endothelial progenitor cells. Circulation 105, 3017–3024 (2002)

    CAS  PubMed  Google Scholar 

  110. Isner, J.M., Kalka, C., Kawamoto, A. & Asahara, T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann. NY Acad. Sci. 953, 75–84 (2001).

    CAS  PubMed  Google Scholar 

  111. Iba, O. et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 106, 2019–2025 (2002).

    CAS  PubMed  Google Scholar 

  112. Tateishi-Yuyama, E. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360, 427–435 (2002).

    PubMed  Google Scholar 

  113. Yoon, Y.S. et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J. Clin. Invest. 111, 717–725 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Saaristo, A., Karkkainen, M.J. & Alitalo, K. Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann. NY Acad. Sci. 979, 94–110 (2002).

    CAS  PubMed  Google Scholar 

  115. Szuba, A. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 16, 1985–1987 (2002).

    CAS  PubMed  Google Scholar 

  116. Orlic, D. et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci. 938, 221–230 (2001).

    CAS  PubMed  Google Scholar 

  117. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003).

    PubMed  Google Scholar 

  118. Kawamoto, A. et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103, 634–637 (2001).

    CAS  PubMed  Google Scholar 

  119. Kamihata, H. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104, 1046–1052 (2001).

    CAS  PubMed  Google Scholar 

  120. Tomita, S. et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II247–II256 (1999).

    CAS  PubMed  Google Scholar 

  121. Fuchs, S. et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol. 37, 1726–1732 (2001).

    CAS  PubMed  Google Scholar 

  122. Kobayashi, T. et al. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J. Surg. Res. 89, 189–195 (2000).

    CAS  PubMed  Google Scholar 

  123. Kamihata, H. et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler. Thromb. Vasc. Biol. 22, 1804–1810 (2002).

    CAS  PubMed  Google Scholar 

  124. Strauer, B.E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918 (2002).

    PubMed  Google Scholar 

  125. Perin, E.C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, published online 21 April 2003 (doi:10.1161/01.CIR.0000070596.30552.8B)..

  126. Tse, H.F. et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361, 47–49 (2003).

    PubMed  Google Scholar 

  127. Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    PubMed  Google Scholar 

  128. Lee, R.J. et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102, 898–901 (2000).

    CAS  PubMed  Google Scholar 

  129. Epstein, S.E., Kornowski, R., Fuchs, S. & Dvorak, H.F. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104, 115–119 (2001).

    CAS  PubMed  Google Scholar 

  130. Stamm, C. et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).

    PubMed  Google Scholar 

  131. Celletti, F.L. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. 7, 425–429 (2001).

    CAS  PubMed  Google Scholar 

  132. Moulton, K.S. et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal. Circulation 99, 1726–1732 (1999).

    CAS  PubMed  Google Scholar 

  133. van Royen, N. et al. Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD11b expression, neointimal formation, and plaque progression. Circ. Res. 92, 218–225 (2003).

    CAS  PubMed  Google Scholar 

  134. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    CAS  PubMed  Google Scholar 

  135. Eliceiri, B.P. & Cheresh, D.A. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 103, 1227–1230 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8, 918–921 (2002).

    CAS  PubMed  Google Scholar 

  137. Wijelath, E.S. et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ. Res. 91, 25–31 (2002).

    CAS  PubMed  Google Scholar 

  138. Donovan, M.J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127, 4531–4540 (2000).

    CAS  PubMed  Google Scholar 

  139. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    CAS  PubMed  Google Scholar 

  140. Tepper, O.M. et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106, 2781–2786 (2002).

    PubMed  Google Scholar 

  141. Dimmeler, S. et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Waltenberger, J., Lange, J. & Kranz, A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 102, 185–190 (2000).

    CAS  PubMed  Google Scholar 

  143. Murasawa, S. et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 106, 1133–1139 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.R. is supported by grants from the National Heart, Lung, Blood Institute, R01 grants HL61849, HL66592, HL67839 and HL59312, American Cancer Society grant 101396 and the Leukemia and Lymphoma Society. D.L. is supported by grants from the National Institutes of Health (HL66592), the Children's Blood Foundation, the Emerald Foundation, the Ted Rapp Foundation, the Foundation for Biomedical Research of the Academy of Athens, Nicolaos Tzimas, and the American Hellenic Educational and Progressive Association V District.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Rafii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafii, S., Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9, 702–712 (2003). https://doi.org/10.1038/nm0603-702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0603-702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing