Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis

Abstract

The anticancer agent paclitaxel (Taxol®) stabilizes tubulin polymerization resulting in arrest in mitosis and apoptotic cell death. Normal human fibroblasts depleted of functional p53 by SV40 T antigen or HPV–16 E6, and primary embryo fibroblasts from p53 null mice showed seven– to ninefold increased cytotoxicity by paclitaxel. Reduced levels of p53 correlated with increased G2/M phase arrest, micronucleation, and p53–independent paclitaxel–induced apoptosis. Surviving cells with intact p53 progressed through mitosis and transiently accumulated in the subsequent G1 phase, coincident with increased p53 and p21cip1,waf1 protein levels. These results are in contrast to studies linking p53 loss with resistance to DNA damaging anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gregory, R.E. & DeLisa, A.F. Paclitaxel: A new antineoplastic agent for refractory ovarian cancer. Clin. Pharm. 12, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  2. Horwitz, S.B. Mechanism of action of taxol. Trends. Pharm. Sci. 13, 134–136 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Schiff, P.B. & Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 77, 1561–1565 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donaldson, K.L., Goolsby, G.L. & Wahl, A.F. Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int. J. Cancer 57, 847–855 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Crossin, K.L. & Carney, D.H. Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor. Cell 27, 341–350 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Verlhac, M.H., de Pennart, H., Maro, B., Cobb, M.H. & Clarke, H.J. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev. Biol. 158, 330–340 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Ding, A.H., Porteu, F., Sanchez, E. & Nathan, C.F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248, 370–372 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Manthey, C.L., Brandes, M.E., Perera, P.Y. & Vogel, S.N. Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J. Immunol. 149, 2459–2465 (1992).

    CAS  PubMed  Google Scholar 

  9. Donaldson, K.L., Goolsby, G.L., Kiener, P.A. & Wahl, A.F. Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Diff. 5, 1041–1050 (1994).

    CAS  PubMed  Google Scholar 

  10. Cross, S.A. et al. A p53-dependent mouse spindle checkpoint. Science 267, 1353–1356 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  12. Demers, G.W., Foster, S.A., Halbert, C.L. & Galloway, D.A. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillo-mavirus 16 E7. Proc. Natl. Acad. Sci. USA 91, 4382–4386 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hartwell, L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543–546 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, J.M. & Bernstein, A. p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA 90 5742–5746 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. el Rouby, S., Thomas, A., Costin, D., Rosenberg, C.R. & Potmesil, M. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82, 3452–3459 (1993).

    CAS  PubMed  Google Scholar 

  19. Cabanillas, F. et al. Refractoriness to chemotherapy and poor survival related to abnormalities of chromosomes 17 and 7 in lymphoma. Am. J. Med. 87, 167–172 (1989).

    CAS  Google Scholar 

  20. Brown, R. et al. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer 55, 678–684 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Fan, S. et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55, 1649–1654 (1995).

    CAS  PubMed  Google Scholar 

  22. Hawkins, D.S., Demers, G.W. & Galloway, D.A. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. (in the press).

  23. Chou, J.Y. Human placental cells transformed by tsA mutants of simian virus 40: A model system for the study of placental functions. Proc. Natl. Acad. Sci. USA 75, 1409–1413 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. & Howley, P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Werness, B.A., Levine, A.J. & Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Foster, S.A., Demers, G.W., Etscheid, E.G. & Galloway, D.A. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivocorrelates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68, 5698–5705 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Kern, S.E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Long, B.H. & Fairchild, C.R. Paclitaxel inhibits progression of mitotic cells to Gl phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 54, 4355–4361 (1994).

    CAS  PubMed  Google Scholar 

  30. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Vogelstein, G. A deadly inheritance. Nature 348, 681–682 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Horwitz, S.B. et al. Taxol: Mechanisms of action and resistance. Monogr. Natl. Cancer Inst. 15, 55–61 (1993).

    Google Scholar 

  33. Maxwell, S.A. et al. Simian virus 40 large T antigen and p53 are microtubule-associated proteins in transformed cells. Cell Growth Diff. 2, 115–127 (1991).

    CAS  PubMed  Google Scholar 

  34. Zhan, Q., Carrier, F. & Fornace, A.J., Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol. 13, 4242–4250 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ettinger, D.S., Finkelstein, D.M., Sarma, R.P. & Johnson, D.H. Phase II study of paclitaxel in patients with extensive-disease small-cell lung cancer: An Eastern Cooperative Oncology Group study. J. Clin. Oncol. 13, 1430–1435 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Younes, A. et al. Three-hour paclitaxel infusion in patients with refractory and relapsed non-Hodgkin's lymphoma. J. Clin. Oncol. 13, 583–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Gianni, L. et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13, 180–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Barcellow-Hoff, M.H., Marton, L.J. & Deen, D.F. Differential drug sensitivity conferred by growth status detected in a mixed population of cycling and non-cycling cells. Cancer Res. 50, 3551–3555 (1990).

    Google Scholar 

  39. Eisenhauer, E.A. et al. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion. J. Clin. Oncol. 12, 2654–2666 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Harlow, E., Crawford, L.V., Pirn, D.C. & Williamson, N.M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39, 861–869 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Halbert, C.L., Demers, G.W. & Galloway, D.A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473–478 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. White, A.E., Livanos, E.M. & Tlsty, T.D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV onco-proteins. Genes Dev. 8, 666–677 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Scudiero, D.A. et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, A., Donaldson, K., Faircnild, C. et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2, 72–79 (1996). https://doi.org/10.1038/nm0196-72

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0196-72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing