Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion

Abstract

The dynamics of β-amyloid deposition and related second-order physiological effects, such as regional cerebral blood flow (rCBF), are key factors for a deeper understanding of Alzheimer's disease (AD). We present longitudinal in vivo data on the dynamics of β-amyloid deposition and the decline of rCBF in two different amyloid precursor protein (APP) transgenic mouse models of AD. Using a multiparametric positron emission tomography and magnetic resonance imaging approach, we demonstrate that in the presence of cerebral β-amyloid angiopathy (CAA), β-amyloid deposition is accompanied by a decline of rCBF. Loss of perfusion correlates with the growth of β-amyloid plaque burden but is not related to the number of CAA-induced microhemorrhages. However, in a mouse model of parenchymal β-amyloidosis and negligible CAA, rCBF is unchanged. Because synaptically driven spontaneous network activity is similar in both transgenic mouse strains, we conclude that the disease-related decline of rCBF is caused by CAA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β-amyloid deposition in APPPS1 mice quantified with [11C]PIB-PET.
Figure 2: β-amyloid deposition in APP23 mice quantified with [11C]PIB-PET.
Figure 3: Quantitative rCBF measurements in APPPS1 and APP23 mice.
Figure 4: Quantification of synaptically driven network activity in APP23 and APPPS1 mice.
Figure 5: Quantification of microhemorrhages in APP23 mice.

Similar content being viewed by others

References

  1. Weiner, M.W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 8, S1–S68 (2012).

    Article  PubMed  Google Scholar 

  2. Klunk, W.E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuntner, C. et al. Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of Alzheimer's disease. Mol. Imaging Biol. 11, 236–240 (2009).

    Article  PubMed  Google Scholar 

  4. Toyama, H. et al. PET imaging of brain with the β-amyloidprobe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 32, 593–600 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Fenchel, M. et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238, 1013–1021 (2006).

    Article  PubMed  Google Scholar 

  6. Raichle, M.E., Herscovitch, P., Mintun, M.A. & Martin, R.W. Cerebral metabolism with positron emission tomography and 0–15 radiopharmaceuticals. Int. J. Neurol. 18, 75–78 (1984).

    CAS  PubMed  Google Scholar 

  7. Snellman, A. et al. Pharmacokinetics of [(1)(8)F]flutemetamol in wild-type rodents and its binding to β-amyloid deposits in a mouse model of Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 39, 1784–1795 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Rojas, S. et al. In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography. Neurobiol. Aging 34, 1790–1798 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Lilja, A.M. et al. Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels. PLoS ONE 8, e58752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Reutern, B. et al. Voxel-based analysis of amyloid-burden measured with [11C]PiB PET in a double transgenic mouse model of Alzheimer's disease. Mol. Imaging Biol. 15, 576–584 (2013).

    Article  PubMed  Google Scholar 

  11. Snellman, A. et al. Longitudinal amyloid imaging in mouse brain with 11C-PIB: comparison of APP23, Tg2576, and APPswe-PS1dE9 mouse models of Alzheimer disease. J. Nucl. Med. 54, 1434–1441 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Bateman, R.J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jack, C.R. Jr. et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jack, C.R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villain, N. et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer's disease: a voxelwise PiB-PET longitudinal study. Brain 135, 2126–2139 (2012).

    Article  PubMed  Google Scholar 

  16. Christie, R.H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan, P. et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 29, 10706–10714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Busche, M.A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321, 1686–1689 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calhoun, M.E. et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA 96, 14088–14093 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maeda, J. et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography. J. Neurosci. 27, 10957–10968 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Eichhoff, G., Kovalchuk, Y., Varga, Z., Verkhratsky, A. & Garaschuk, O. Calcium Measurement Methods Vol. 43 (Humana Press, New York, 2010).

  24. Manook, A. et al. Small-animal PET imaging of amyloid-β plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer's disease. PLoS ONE 7, e31310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wadghiri, Y.Z. et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50, 293–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J. et al. Detection of amyloid plaques targeted by USPIO-Aβ1–42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage 55, 1600–1609 (2011).

    Article  PubMed  Google Scholar 

  27. Hefendehl, J.K. et al. Long-term in vivo imaging of β-amyloid plaque appearance and growth in a mouse model of cerebral β-amyloidosis. J. Neurosci. 31, 624–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosen, R.F. et al. Deficient high-affinity binding of Pittsburgh compound B in a case of Alzheimer's disease. Acta Neuropathol. 119, 221–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Bacskai, B.J. et al. Molecular imaging with Pittsburgh compound B confirmed at autopsy: a case report. Arch. Neurol. 64, 431–434 (2007).

    Article  PubMed  Google Scholar 

  30. Ikonomovic, M.D. et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 131, 1630–1645 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sabri, O. et al. Multicentre phase 3 trial on florbetaben for β-amyloid brain PET in Alzheimer disease. J. Nucl. Med. Mtg. Abstr. 53, 41 (2012).

    Google Scholar 

  32. Kelly, P.H. et al. Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol. Aging 24, 365–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wegenast-Braun, B.M. et al. Independent effects of intra- and extracellular Aβ on learning-related gene expression. Am. J. Pathol. 175, 271–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beckmann, N., Gerard, C., Abramowski, D., Cannet, C. & Staufenbiel, M. Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer's disease: application to passive Aβ immunotherapy. J. Neurosci. 31, 1023–1031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winkler, D.T. et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J. Neurosci. 21, 1619–1627 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Phelps, M.E., Hoffman, E.J., Huang, S.C. & Ter-Pogossian, M.M. Effect of positron range on spatial resolution. J. Nucl. Med. 16, 649–652 (1975).

    CAS  PubMed  Google Scholar 

  37. Bao, Q., Newport, D., Chen, M., Stout, D.B. & Chatziioannou, A.F. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J. Nucl. Med. 50, 401–408 (2009).

    Article  PubMed  Google Scholar 

  38. Lammertsma, A.A. & Hume, S.P. Simplified reference tissue model for PET receptor studies. Neuroimage 4, 153–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Logan, J. et al. Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16, 834–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J. Nucl. Med. 30, 1069–1078 (1989).

    CAS  PubMed  Google Scholar 

  41. Yee, S.H., Jerabek, P.A. & Fox, P.T. Non-invasive quantification of cerebral blood flow for rats by microPET imaging of 15O labelled water: the application of a cardiac time-activity curve for the tracer arterial input function. Nucl. Med. Commun. 26, 903–911 (2005).

    Article  PubMed  Google Scholar 

  42. Peller, M. et al. Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magn. Reson. Imaging 21, 545–551 (2003).

    Article  PubMed  Google Scholar 

  43. Zhang, X. et al. In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T. Magn. Reson. Med. 70, 1082–1086 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kwong, K.K. et al. MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med. 34, 878–887 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Davenport, H.A. Histological and Histochemical Technics (W.B. Saunders Company, Philadelphia, USA, 1960).

  46. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease–like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Garaschuk, O., Milos, R.I. & Konnerth, A. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat. Protoc. 1, 380–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Federal Ministry of Education and Research (BMBF) grant 01 Gi 0705, the German Research Foundation (DFG) (PI 771/1-1), the Interdisciplinary Center for Clinical Research (IZKF) junior research group program (Functional and Metabolic Brain Imaging, fortüne number 2209-0-0) and the Werner Siemens Foundation. We acknowledge support from P. Martirosian, J. van den Hoff and M. Kneilling. We thank D. Bukala, F. Cay, M. Harant and M. Lehnhoff for their excellent technical assistance during all experiments. We thank J. Odenthal (Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen) for providing APPPS1 mice. We thank S.C. Vega for confirmative data evaluation. We thank M. Eichner for statistical expert advice.

Author information

Authors and Affiliations

Authors

Contributions

F.C.M. and B.J.P. designed the research. F.C.M., H.F.W., A.M.S., J.G.M., S.W., C.L., L.Y. and O.G. performed the research. M.B., D.S., M.S. and M.J. provided the AD mouse models. A.S. and G.R. provided the PET tracers. F.C.M. and S.W. designed the figures. O.S. provided input of clinical relevance and edited the manuscript. C.C. obtained ethical approval of the study, aided study planning and edited the manuscript. F.C.M. analyzed the data, conducted the statistics and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Bernd J Pichler.

Ethics declarations

Competing interests

B.J.P. receives grant and research support from AstraZeneca, Bayer Healthcare, Boehringer-Ingelheim, Bruker, Oncodesign, Merck and Siemens; however, none of the grants is directly related to this work. D.S. is an employee of Boehringer-Ingelheim. O.S. receives grant and research support from G.E., Bayer Healthcare, Siemens, Piramal and Navidea; however, none of the grant issuers is directly related to this work. M.S. was an employee of Novartis while the studies were conducted. M.B. is the CEO of Synovo.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary Discussion and Supplementary Methods. (PDF 2329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, F., Wehrl, H., Schmid, A. et al. Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 20, 1485–1492 (2014). https://doi.org/10.1038/nm.3734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing