Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atherosclerosis: current pathogenesis and therapeutic options

Abstract

Coronary artery disease (CAD) arising from atherosclerosis is a leading cause of death and morbidity worldwide. The underlying pathogenesis involves an imbalanced lipid metabolism and a maladaptive immune response entailing a chronic inflammation of the arterial wall. The disturbed equilibrium of lipid accumulation, immune responses and their clearance is shaped by leukocyte trafficking and homeostasis governed by chemokines and their receptors. New pro- and anti-inflammatory pathways linking lipid and inflammation biology have been discovered, and genetic profiling studies have unveiled variations involved in human CAD. The growing understanding of the inflammatory processes and mediators has uncovered an intriguing diversity of targetable mechanisms that can be exploited to complement lipid-lowering therapies. Here we aim to systematically survey recently identified molecular mechanisms, translational developments and clinical strategies for targeting lipid-related inflammation in atherosclerosis and CAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of chemokines and their receptors in atherogenesis.
Figure 2: Neutrophils as crucial players in atherogenesis.
Figure 3: DCs at the crossroads of adaptive immunity.
Figure 4: Lipid mediators affect inflammation and atherogenesis through diverse signaling pathways.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Moore, K.J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwon, G.P., Schroeder, J.L., Amar, M.J., Remaley, A.T. & Balaban, R.S. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117, 2919–2927 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansson, G.K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    CAS  PubMed  Google Scholar 

  4. Ylä-Herttuala, S. et al. Stabilisation of atherosclerotic plaques. Position Paper of the European Society of Cardiology (ESC) Working Group of Atherosclerosis and Vascular Biology. Thromb. Haemost. 106, 1–19 (2011).

    PubMed  Google Scholar 

  5. Weber, C., Zernecke, A. & Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 8, 802–815 (2008).

    CAS  PubMed  Google Scholar 

  6. Woollard, K.J. & Geissmann, F. Monocytes in atherosclerosis: subsets and functions. Nat. Rev. Cardiol. 7, 77–86 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Koenen, R.R. & Weber, C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat. Rev. Drug Discov. 9, 141–153 (2010).

    CAS  PubMed  Google Scholar 

  8. Swirski, F.K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5 and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Combadière, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    PubMed  Google Scholar 

  11. Saederup, N., Chan, L., Lira, S.A. & Charo, I.F. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in Ccr2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117, 1642–1648 (2008).

    CAS  PubMed  Google Scholar 

  12. Zernecke, A. & Weber, C. Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc. Res. 86, 192–201 (2010).

    CAS  PubMed  Google Scholar 

  13. Veillard, N.R. et al. Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112, 870–878 (2005).

    CAS  PubMed  Google Scholar 

  14. Heller, E.A. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113, 2301–2312 (2006).

    CAS  PubMed  Google Scholar 

  15. van Wanrooij, E.J. et al. CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor–deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 251–257 (2008).

    CAS  PubMed  Google Scholar 

  16. Potteaux, S. et al. Role of bone marrow–derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 26, 1858–1863 (2006).

    CAS  PubMed  Google Scholar 

  17. Braunersreuther, V. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 27, 373–379 (2007).

    CAS  PubMed  Google Scholar 

  18. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    CAS  PubMed  Google Scholar 

  19. Mause, S.F., von Hundelshausen, P., Zernecke, A., Koenen, R.R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol. 25, 1512–1518 (2005).

    CAS  PubMed  Google Scholar 

  20. Veillard, N.R. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 94, 253–261 (2004).

    CAS  PubMed  Google Scholar 

  21. Sachais, B.S. et al. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57BL/6 and Apoe−/− mice. Thromb. Haemost. 98, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  22. von Hundelshausen, P. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930 (2005).

    CAS  PubMed  Google Scholar 

  23. Koenen, R.R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    CAS  PubMed  Google Scholar 

  24. Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    CAS  PubMed  Google Scholar 

  25. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl. Acad. Sci. USA 103, 3781–3786 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Potteaux, S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J. Clin. Invest. 121, 2025–2036 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feig, J.E. et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J. Clin. Invest. 120, 4415–4424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Luchtefeld, M. et al. Chemokine receptor 7 knockout attenuates atherosclerotic plaque development. Circulation 122, 1621–1628 (2010).

    CAS  PubMed  Google Scholar 

  30. Bernhagen, J. et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 (2007).

    CAS  PubMed  Google Scholar 

  31. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).

    CAS  PubMed  Google Scholar 

  32. Curtiss, L.K. & Tobias, P.S. Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50 (suppl.), S340–S345 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Seimon, T.A. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2–dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12, 467–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanellakis, P. et al. High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 313–319 (2011).

    CAS  PubMed  Google Scholar 

  35. Zernecke, A. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res. 102, 209–217 (2008).

    CAS  PubMed  Google Scholar 

  36. Rotzius, P. et al. Distinct infiltration of neutrophils in lesion shoulders in Apoe−/− mice. Am. J. Pathol. 177, 493–500 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Drechsler, M., Megens, R.T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    CAS  PubMed  Google Scholar 

  38. Yvan-Charvet, L. et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via Toll-like receptors and neutrophil infiltration of atherosclerotic lesions. Circulation 118, 1837–1847 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Soehnlein, O. et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112, 1461–1471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cole, J.E. et al. Unexpected protective role for Toll-like receptor 3 in the arterial wall. Proc. Natl. Acad. Sci. USA 108, 2372–2377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    CAS  PubMed  Google Scholar 

  42. Papayannopoulos, V. & Zychlinsky, A. NETs: a new strategy for using old weapons. Trends Immunol. 30, 513–521 (2009).

    CAS  PubMed  Google Scholar 

  43. Zhang, Z. et al. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol. 39, 3181–3194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    CAS  PubMed  Google Scholar 

  45. Ludewig, B. et al. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc. Natl. Acad. Sci. USA 97, 12752–12757 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl. Acad. Sci. USA 102, 1596–1601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ait-Oufella, H. et al. Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice. Circulation 116, 1707–1713 (2007).

    PubMed  Google Scholar 

  48. Sasaki, N. et al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120, 1996–2005 (2009).

    CAS  PubMed  Google Scholar 

  49. Nilsson, J., Hansson, G.K. & Shah, P.K. Immunomodulation of atherosclerosis: implications for vaccine development. Arterioscler. Thromb. Vasc. Biol. 25, 18–28 (2005).

    CAS  PubMed  Google Scholar 

  50. Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207, 1081–1093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Binder, C.J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48, 425–433 (2007).

    CAS  PubMed  Google Scholar 

  53. Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    CAS  PubMed  Google Scholar 

  54. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    CAS  PubMed  Google Scholar 

  55. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Millonig, G. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler. Thromb. Vasc. Biol. 21, 503–508 (2001).

    CAS  PubMed  Google Scholar 

  57. Jongstra-Bilen, J. et al. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073–2083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, J.H. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206, 497–505 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, P. et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler. Thromb. Vasc. Biol. 28, 243–250 (2008).

    CAS  PubMed  Google Scholar 

  61. Wu, H. et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119, 2708–2717 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shaposhnik, Z., Wang, X., Weinstein, M., Bennett, B.J. & Lusis, A.J. Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 27, 621–627 (2007).

    CAS  PubMed  Google Scholar 

  63. Zhu, S.N., Chen, M., Jongstra-Bilen, J. & Cybulsky, M.I. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J. Exp. Med. 206, 2141–2149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paulson, K.E. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ. Res. 106, 383–390 (2010).

    CAS  PubMed  Google Scholar 

  65. Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    CAS  PubMed  Google Scholar 

  66. Gautier, E.L. et al. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation 119, 2367–2375 (2009).

    CAS  PubMed  Google Scholar 

  67. Han, J.W. et al. Vessel wall-embedded dendritic cells induce T cell autoreactivity and initiate vascular inflammation. Circ. Res. 102, 546–553 (2008).

    CAS  PubMed  Google Scholar 

  68. Niessner, A. et al. Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation 116, 2043–2052 (2007).

    CAS  PubMed  Google Scholar 

  69. Niessner, A. et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T cell function in the atherosclerotic plaque through interferon-α. Circulation 114, 2482–2489 (2006).

    CAS  PubMed  Google Scholar 

  70. Goossens, P. et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 12, 142–153 (2010).

    CAS  PubMed  Google Scholar 

  71. Noels, H., Bernhagen, J. & Weber, C. Macrophage migration inhibitory factor: a noncanonical chemokine important in atherosclerosis. Trends Cardiovasc. Med. 19, 76–86 (2009).

    CAS  PubMed  Google Scholar 

  72. Gotsman, I., Sharpe, A.H. & Lichtman, A.H. T cell costimulation and coinhibition in atherosclerosis. Circ. Res. 103, 1220–1231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lievens, D., Eijgelaar, W.J., Biessen, E.A., Daemen, M.J. & Lutgens, E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb. Haemost. 102, 206–214 (2009).

    CAS  PubMed  Google Scholar 

  74. Lievens, D. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116, 4317–4327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lutgens, E. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391–404 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Greaves, D.R. & Gordon, S. The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J. Lipid Res. 50 (suppl.), S282–S286 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Manning-Tobin, J.J. et al. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 29, 19–26 (2009).

    CAS  PubMed  Google Scholar 

  78. Stewart, C.R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    CAS  PubMed  Google Scholar 

  79. Thorp, E. et al. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 9, 474–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hotamisligil, G.S. Endoplasmic reticulum stress and atherosclerosis. Nat. Med. 16, 396–399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yvan-Charvet, L. et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117, 3900–3908 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, F. et al. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J. Clin. Invest. 120, 3979–3995 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Epps, K.C. & Wilensky, R.L. Lp-PLA—a novel risk factor for high-risk coronary and carotid artery disease. J. Intern. Med. 269, 94–106 (2011).

    CAS  PubMed  Google Scholar 

  89. Wilensky, R.L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med. 14, 1059–1066 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, J. et al. Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/ PAF acetylhydrolase. Circ. Res. 108, 469–477 (2011).

    CAS  PubMed  Google Scholar 

  91. Siess, W. et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 96, 6931–6936 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, Z. et al. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab. 13, 592–600 (2011).

    CAS  PubMed  Google Scholar 

  93. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schunkert, H., Erdmann, J. & Samani, N.J. Genetics of myocardial infarction: a progress report. Eur. Heart J. 31, 918–925 (2010).

    PubMed  Google Scholar 

  95. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    CAS  PubMed  Google Scholar 

  96. Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376, 1393–1400 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

  99. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470, 264–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mehta, N.N. et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur. Heart J. 32, 963–971 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Damås, J.K. et al. Stromal cell-derived factor-1alpha in unstable angina: potential antiinflammatory and matrix-stabilizing effects. Circulation 106, 36–42 (2002).

    PubMed  Google Scholar 

  102. Kiechl, S. et al. Coronary artery disease-related genetic variant on chromosome 10q11 is associated with carotid intima-media thickness and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 2678–2683 (2010).

    CAS  PubMed  Google Scholar 

  103. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    PubMed  Google Scholar 

  104. Harris, T.A., Yamakuchi, M., Ferlito, M., Mendell, J.T. & Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 105, 1516–1521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fichtlscherer, S. et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).

    CAS  PubMed  Google Scholar 

  106. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Andraws, R., Berger, J.S. & Brown, D.L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. J. Am. Med. Assoc. 293, 2641–2647 (2005).

    CAS  Google Scholar 

  108. Ray, K.K. & Cannon, C.P. The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes. J. Am. Coll. Cardiol. 46, 1425–1433 (2005).

    CAS  PubMed  Google Scholar 

  109. Nissen, S.E. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am. J. Cardiol. 96, 61F–68F (2005).

    CAS  PubMed  Google Scholar 

  110. Ridker, P.M. et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373, 1175–1182 (2009).

    CAS  PubMed  Google Scholar 

  111. Taylor, A.J. et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).

    CAS  PubMed  Google Scholar 

  112. Lukasova, M., Malaval, C., Gille, A., Kero, J. & Offermanns, S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J. Clin. Invest. 121, 1163–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    CAS  PubMed  Google Scholar 

  114. von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100, 27–40 (2007).

    CAS  PubMed  Google Scholar 

  115. Sipahi, I. et al. Beta-blockers and progression of coronary atherosclerosis: pooled analysis of 4 intravascular ultrasonography trials. Ann. Intern. Med. 147, 10–18 (2007).

    PubMed  Google Scholar 

  116. Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    CAS  PubMed  Google Scholar 

  117. Nissen, S.E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. J. Am. Med. Assoc. 290, 2292–2300 (2003).

    CAS  Google Scholar 

  118. Navab, M. et al. Structure and function of HDL mimetics. Arterioscler. Thromb. Vasc. Biol. 30, 164–168 (2010).

    CAS  PubMed  Google Scholar 

  119. Serruys, P.W. et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118, 1172–1182 (2008).

    CAS  PubMed  Google Scholar 

  120. Jandeleit-Dahm, K.A., Calkin, A., Tikellis, C. & Thomas, M. Direct antiatherosclerotic effects of PPAR agonists. Curr. Opin. Lipidol. 20, 24–29 (2009).

    CAS  PubMed  Google Scholar 

  121. Home, P.D. et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373, 2125–2135 (2009).

    CAS  PubMed  Google Scholar 

  122. Nissen, S.E. & Wolski, K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch. Intern. Med. 170, 1191–1201 (2010).

    CAS  PubMed  Google Scholar 

  123. Lincoff, A.M., Wolski, K., Nicholls, S.J. & Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. J. Am. Med. Assoc. 298, 1180–1188 (2007).

    CAS  Google Scholar 

  124. Nissen, S.E. et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. J. Am. Med. Assoc. 299, 1547–1560 (2008).

    CAS  Google Scholar 

  125. Nicholls, S.J., Tuzcu, E.M., Brennan, D.M., Tardif, J.C. & Nissen, S.E. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 118, 2506–2514 (2008).

    CAS  PubMed  Google Scholar 

  126. Klingenberg, R. & Hansson, G.K. Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. Eur. Heart J. 30, 2838–2844 (2009).

    CAS  PubMed  Google Scholar 

  127. Weber, C. et al. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc. Natl. Acad. Sci. USA 105, 16278–16283 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kraemer, S. et al. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. FASEB J. 25, 894–906 (2011).

    CAS  PubMed  Google Scholar 

  129. Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol. 107, 906–911 (2011).

    CAS  PubMed  Google Scholar 

  130. Liehn, E.A. et al. A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J. Am. Coll. Cardiol. 56, 1847–1857 (2010).

    CAS  PubMed  Google Scholar 

  131. Braunersreuther, V. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol. 28, 1090–1096 (2008).

    CAS  PubMed  Google Scholar 

  132. Hjerpe, C., Johansson, D., Hermansson, A., Hansson, G.K. & Zhou, X. Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in Apoe−/− mice. Atherosclerosis 209, 436–441 (2010).

    CAS  PubMed  Google Scholar 

  133. Habets, K.L. et al. Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Res. 85, 622–630 (2010).

    CAS  PubMed  Google Scholar 

  134. Hermansson, A. et al. Immunotherapy with tolerogenic apolipoprotein B-100–loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123, 1083–1091 (2011).

    CAS  PubMed  Google Scholar 

  135. Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 946–952 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (FOR809), the European Research Council and Fondation Leducq. We sincerely apologize to all scientists whose important contributions to the field could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weber.

Ethics declarations

Competing interests

C.W. is shareholder of Carolus Therapeutics Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, C., Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17, 1410–1422 (2011). https://doi.org/10.1038/nm.2538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2538

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research