Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression

Abstract

Integrins regulate adhesion-dependent growth, survival and invasion of tumor cells. In particular, expression of integrin αvβ3 is associated with progression of a variety of human tumors. Here we reveal a previously undescribed adhesion-independent role for integrin αvβ3 in pancreatic cancer and other carcinomas. Specifically, αvβ3 expressed in carcinoma cells enhanced anchorage-independent tumor growth in vitro and increased lymph node metastases in vivo. These effects required recruitment of c-Src to the β3 integrin cytoplasmic tail, leading to c-Src activation, Crk-associated substrate (CAS) phosphorylation and tumor cell survival that, unexpectedly, was independent of cell adhesion or focal adhesion kinase (FAK) activation. Pharmacological blockade of c-Src kinase activity or decreased expression of endogenous αvβ3 integrin or c-Src not only inhibited anchorage-independent growth but also suppressed metastasis in vivo, yet these manipulations did not affect tumor cell migration or invasion. These data define an unexpected role for an integrin as a mediator of anchorage independence, suggesting that an αvβ3–c-Src signaling module may account for the aggressive behavior of integrin αvβ3–expressing tumors in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrin αvβ3 is expressed in a subpopulation of human carcinoma cells, and its expression correlates with lymph node (LN) invasion.
Figure 2: Integrin αvβ3 enhances pancreatic tumor progression and metastasis.
Figure 3: Integrin αvβ3 promotes anchorage-independent activation of c-Src.
Figure 4: Integrin αvβ3 induces anchorage-independent survival with no affect on the survival of adherent cells.
Figure 5: Integrin αvβ3 induces anchorage-independence through c-Src phosphorylation of CAS.
Figure 6: Integrin αvβ3 requires c-Src for tumor cell survival and metastasis in vivo.

Similar content being viewed by others

References

  1. Guo, W. & Giancotti, F.G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5, 816–826 (2004).

    Article  CAS  Google Scholar 

  2. Schlaepfer, D.D., Mitra, S.K. & Ilic, D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692, 77–102 (2004).

    Article  CAS  Google Scholar 

  3. Roberts, W.G. et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 68, 1935–1944 (2008).

    Article  CAS  Google Scholar 

  4. Pylayeva, Y. et al. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J. Clin. Invest. 119, 252–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lahlou, H. et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc. Natl. Acad. Sci. USA 104, 20302–20307 (2007).

    Article  CAS  Google Scholar 

  6. Eide, B.L., Turck, C.W. & Escobedo, J.A. Identification of Tyr-397 as the primary site of tyrosine phosphorylation and pp60Src association in the focal adhesion kinase, pp125FAK. Mol. Cell. Biol. 15, 2819–2827 (1995).

    Article  CAS  Google Scholar 

  7. Ishizawar, R. & Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell 6, 209–214 (2004).

    Article  CAS  Google Scholar 

  8. Brábek, J. et al. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol. Cancer Res. 3, 307–315 (2005).

    Article  Google Scholar 

  9. Klemke, R.L. et al. CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J. Cell Biol. 140, 961–972 (1998).

    Article  CAS  Google Scholar 

  10. Cho, S.Y. & Klemke, R.L. Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J. Cell Biol. 149, 223–236 (2000).

    Article  CAS  Google Scholar 

  11. Albelda, S.M. et al. Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res. 50, 6757–6764 (1990).

    CAS  PubMed  Google Scholar 

  12. Hsu, M.Y. et al. Adenoviral gene transfer of β3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am. J. Pathol. 153, 1435–1442 (1998).

    Article  CAS  Google Scholar 

  13. McCabe, N.P., De, S., Vasanji, A., Brainard, J. & Byzova, T.V. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling. Oncogene 26, 6238–6243 (2007).

    Article  CAS  Google Scholar 

  14. Takayama, S. et al. The relationship between bone metastasis from human breast cancer and integrin αvβ3 expression. Anticancer Res. 25, 79–83 (2005).

    CAS  Google Scholar 

  15. Sloan, E.K. et al. Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 8, R20 (2006).

    Article  Google Scholar 

  16. Felding-Habermann, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci. USA 98, 1853–1858 (2001).

    Article  CAS  Google Scholar 

  17. Gruber, G. et al. Correlation between the tumoral expression of β3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer 92, 41–46 (2005).

    Article  CAS  Google Scholar 

  18. Hosotani, R. et al. Expression of integrin αvβ3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25, e30–e35 (2002).

    Article  Google Scholar 

  19. Giancotti, F.G. & Ruoslahti, E. Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60, 849–859 (1990).

    Article  CAS  Google Scholar 

  20. Varner, J.A., Emerson, D.A. & Juliano, R.L. Integrin α5β1 expression negatively regulates cell growth: reversal by attachment to fibronectin. Mol. Biol. Cell 6, 725–740 (1995).

    Article  CAS  Google Scholar 

  21. Stupack, D.G., Puente, X.S., Boutsaboualoy, S., Storgard, C.M. & Cheresh, D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155, 459–470 (2001).

    Article  CAS  Google Scholar 

  22. Stupack, D.G. et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439, 95–99 (2006).

    Article  CAS  Google Scholar 

  23. Ginsberg, M.H., Partridge, A. & Shattil, S.J. Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516 (2005).

    Article  CAS  Google Scholar 

  24. Arias-Salgado, E.G. et al. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc. Natl. Acad. Sci. USA 100, 13298–13302 (2003).

    Article  CAS  Google Scholar 

  25. Tsatsanis, C. & Spandidos, D.A. Oncogenic kinase signaling in human neoplasms. Ann. NY Acad. Sci. 1028, 168–175 (2004).

    Article  CAS  Google Scholar 

  26. Simpson, C.D., Anyiwe, K. & Schimmer, A.D. Anoikis resistance and tumor metastasis. Cancer Lett. 272, 177–185 (2008).

    Article  CAS  Google Scholar 

  27. Leavesley, D.I., Ferguson, G.D., Wayner, E.A. & Cheresh, D.A. Requirement of the integrin β3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J. Cell Biol. 117, 1101–1107 (1992).

    Article  CAS  Google Scholar 

  28. Miyauchi, A. et al. Recognition of osteopontin and related peptides by an α5β3 integrin stimulates immediate cell signals in osteoclasts. J. Biol. Chem. 266, 20369–20374 (1991).

    CAS  PubMed  Google Scholar 

  29. Loftus, J.C. et al. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 249, 915–918 (1990).

    Article  CAS  Google Scholar 

  30. Shin, N.Y. et al. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J. Biol. Chem. 279, 38331–38337 (2004).

    Article  CAS  Google Scholar 

  31. Summy, J.M. & Gallick, G.E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22, 337–358 (2003).

    Article  CAS  Google Scholar 

  32. Reddig, P.J. & Juliano, R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 24, 425–439 (2005).

    Article  Google Scholar 

  33. Westhoff, M.A., Serrels, B., Fincham, V.J., Frame, M.C. & Carragher, N.O. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell. Biol. 24, 8113–8133 (2004).

    Article  CAS  Google Scholar 

  34. Uhm, J.H., Dooley, N.P., Kyritsis, A.P., Rao, J.S. & Gladson, C.L. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin. Cancer Res. 5, 1587–1594 (1999).

    CAS  PubMed  Google Scholar 

  35. De, S. et al. VEGF-integrin interplay controls tumor growth and vascularization. Proc. Natl. Acad. Sci. USA 102, 7589–7594 (2005).

    Article  CAS  Google Scholar 

  36. Matter, M.L. & Ruoslahti, E. A signaling pathway from the α5β1 and αvβ3 integrins that elevates bcl-2 transcription. J. Biol. Chem. 276, 27757–27763 (2001).

    Article  CAS  Google Scholar 

  37. Bao, W. & Stromblad, S. Integrin αv-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. J. Cell Biol. 167, 745–756 (2004).

    Article  CAS  Google Scholar 

  38. Scatena, M. et al. NF-kappaB mediates αvβ3 integrin–induced endothelial cell survival. J. Cell Biol. 141, 1083–1093 (1998).

    Article  CAS  Google Scholar 

  39. Charo, I.F., Nannizzi, L., Smith, J.W. & Cheresh, D.A. The vitronectin receptor αvβ3 binds fibronectin and acts in concert with α5β1 in promoting cellular attachment and spreading on fibronectin. J. Cell Biol. 111, 2795–2800 (1990).

    Article  CAS  Google Scholar 

  40. Cabodi, S. et al. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res. 66, 4672–4680 (2006).

    Article  CAS  Google Scholar 

  41. Bouton, A.H., Riggins, R.B. & Bruce-Staskal, P.J. Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20, 6448–6458 (2001).

    Article  CAS  Google Scholar 

  42. Sakai, R. et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation–dependent manner. EMBO J. 13, 3748–3756 (1994).

    Article  CAS  Google Scholar 

  43. Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat. Genet. 19, 361–365 (1998).

    Article  CAS  Google Scholar 

  44. Jove, R. & Hanafusa, H. Cell transformation by the viral Src oncogene. Annu. Rev. Cell Biol. 3, 31–56 (1987).

    Article  CAS  Google Scholar 

  45. Huveneers, S. et al. Integrin α5 β3 controls activity and oncogenic potential of primed c-Src. Cancer Res. 67, 2693–2700 (2007).

    Article  CAS  Google Scholar 

  46. Huveneers, S., Arslan, S., van de Water, B., Sonnenberg, A. & Danen, E.H. Integrins uncouple Src-induced morphological and oncogenic transformation. J. Biol. Chem. 283, 13243–13251 (2008).

    Article  CAS  Google Scholar 

  47. Nip, J., Shibata, H., Loskutoff, D.J., Cheresh, D.A. & Brodt, P. Human melanoma cells derived from lymphatic metastases use integrin α5 β3 to adhere to lymph node vitronectin. J. Clin. Invest. 90, 1406–1413 (1992).

    Article  CAS  Google Scholar 

  48. Allan, A.L. et al. Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. Am. J. Pathol. 169, 233–246 (2006).

    Article  CAS  Google Scholar 

  49. Reinmuth, N. et al. αvβ3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res. 63, 2079–2087 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank D. Stupack, L. Acevedo and S. Anand for critical reading of the manuscript. We also want to express our gratitude to M. Bouvet and A. Lowy for their help in obtaining human pancreatic tumor sections. J.S.D. was supported by a US National Institutes of Health Ruth L. Kirschstein National Research Service Award Post-doctoral Fellowship (grant CA123774). This work was supported by funding from the US National Institutes of Health grant numbers CA78045, CA45726, CA95262, CA129660 and HL57900 (to D.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.S.D. designed the project, performed most of the experiments, analyzed the data and wrote the manuscript. L.A.B. helped design and conduct the orthotopic tumor experiments. D.J.S. designed and conducted the dasatinib treatment study. M.H. initiated and performed the CAS experiments, whereas S.K.L. planned, conducted and analyzed many of the experiments with breast cancer cell lines. N.P. planned and analyzed the experiments involving the Src-β3 interaction. D.T. analyzed and interpreted the immunohistochemistry and histology experiments. S.J.S. helped conceive of the study and analyzed the data. D.A.C. initiated the study, analyzed the data, supervised the overall project and wrote the manuscript.

Corresponding author

Correspondence to David A Cheresh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Methods (PDF 2663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desgrosellier, J., Barnes, L., Shields, D. et al. An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15, 1163–1169 (2009). https://doi.org/10.1038/nm.2009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing