Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes

Abstract

Imaging agents that enable direct visualization and quantification of apoptosis in vivo have great potential value for monitoring chemotherapeutic response as well as for early diagnosis and disease monitoring. We describe here the development of fluorescently labeled activity-based probes (ABPs) that covalently label active caspases in vivo. We used these probes to monitor apoptosis in the thymi of mice treated with dexamethasone as well as in tumor-bearing mice treated with the apoptosis-inducing monoclonal antibody Apomab (Genentech). Caspase ABPs provided direct readouts of the kinetics of apoptosis in live mice, whole organs and tissue extracts. The probes produced a maximum fluorescent signal that could be monitored noninvasively and that coincided with the peak in caspase activity, as measured by gel analysis. Overall, these studies demonstrate that caspase-specific ABPs have the potential to be used for noninvasive imaging of apoptosis in both preclinical and clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical evaluation of active and control probes.
Figure 2: Kinetics of caspase activation in response to dexamethasone treatment.
Figure 3: Imaging dexamethasone-induced apoptosis in the thymus.
Figure 4: Noninvasive optical imaging of Apomab-induced cell death in mice bearing xenografted human colorectal cancer COLO205 tumors.
Figure 5: Biochemical and histological analysis of Apomab-induced apoptosis.

Similar content being viewed by others

References

  1. Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V–Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petrovsky, A., Schellenberger, E., Josephson, L., Weissleder, R. & Bogdanov, A. Jr. Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res. 63, 1936–1942 (2003).

    CAS  PubMed  Google Scholar 

  3. Schellenberger, E.A. et al. Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia 5, 187–192 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blankenberg, F.G., Vanderheyden, J.L., Strauss, H.W. & Tait, J.F. Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nat. Protoc. 1, 108–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Belhocine, T. et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res. 8, 2766–2774 (2002).

    CAS  PubMed  Google Scholar 

  6. Rottey, S., Slegers, G., Van Belle, S., Goethals, I. & Van de Wiele, C. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J. Nucl. Med. 47, 1813–1818 (2006).

    CAS  PubMed  Google Scholar 

  7. Vermeersch, H. et al. 99mTc-HYNIC Annexin-V imaging of primary head and neck carcinoma. Nucl. Med. Commun. 25, 259–263 (2004).

    Article  PubMed  Google Scholar 

  8. Hofstra, L. et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Aloya, R. et al. Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11, 2089–2101 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen, A. et al. From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res. 19, 625–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Laxman, B. et al. Noninvasive real-time imaging of apoptosis. Proc. Natl. Acad. Sci. USA 99, 16551–16555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bullok, K. & Piwnica-Worms, D. Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J. Med. Chem. 48, 5404–5407 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bauer, C., Bauder-Wuest, U., Mier, W., Haberkorn, U. & Eisenhut, M. 131I-labeled peptides as caspase substrates for apoptosis imaging. J. Nucl. Med. 46, 1066–1074 (2005).

    CAS  PubMed  Google Scholar 

  14. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sexton, K.B., Witte, M.D., Blum, G. & Bogyo, M. Design of cell-permeable, fluorescent activity–based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain. Bioorg. Med. Chem. Lett. 17, 649–653 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, D. et al. Synthesis, radiolabeling and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg. Med. Chem. Lett. 16, 5041–5046 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bedner, E., Smolewski, P., Amstad, P. & Darzynkiewicz, Z. Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 259, 308–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Smolewski, P. et al. Detection of caspases activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Méthot, N. et al. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation. J. Biol. Chem. 279, 27905–27914 (2004).

    Article  PubMed  Google Scholar 

  21. Pozarowski, P. et al. Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55, 50–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Rozman-Pungerčar, J. et al. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ. 10, 881–888 (2003).

    Article  PubMed  Google Scholar 

  23. Berger, A.B. et al. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23, 509–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Richard, J.P. et al. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280, 15300–15306 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Cohen, J.J. Glucocorticoid-induced apoptosis in the thymus. Semin. Immunol. 4, 363–369 (1992).

    CAS  PubMed  Google Scholar 

  27. Odaka, C. & Mizuochi, T. Macrophages are involved in DNA degradation of apoptotic cells in murine thymus after administration of hydrocortisone. Cell Death Differ. 9, 104–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Brewer, J.A., Kanagawa, O., Sleckman, B.P. & Muglia, L.J. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J. Immunol. 169, 1837–1843 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Zavitsanou, K. et al. Detection of apoptotic cell death in the thymus of dexamethasone treated rats using [123I]annexin V and in situ oligonucleotide ligation. J. Mol. Histol. 38, 313–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, C. et al. Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death Differ. 15, 751–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Vivès, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  PubMed  Google Scholar 

  33. Sexton, K.B. et al. Specificity of aza-peptide electrophile activity-based probes of caspases. Cell Death Differ. 14, 727–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, A. & Ellman, J.A. Parallel solution-phase synthesis of mechanism-based cysteine protease inhibitors. Org. Lett. 3, 3707–3709 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Blum, G., von Degenfeld, G., Merchant, M.J., Blau, H.M. & Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3, 668–677 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Salvesen from the Burnham Institute for Medical Research for the kind gift of recombinant caspases and for creative input on the project. We thank B. Sloane, Wayne State University, for the kind gift of cathepsin antibodies and C. Watts of the University of Dundee for the kind gift of legumain antibodies. We thank R. Weimer for critical discussion of the data and help with protocols for the use of Apomab. We thank A. Fan and D. Felsher for assistance with the MYC mouse model. We thank the Molecular Imaging Program at Stanford and the Stanford Small Animal Imaging Facility for assistance with noninvasive imaging studies. This work was funded by US National Institutes of Health grants U54 RR020843 and R01 EB005011 (to M.B.). M.G.P. was supported by Public Health Services grant CA09302, awarded by the US National Cancer Institute, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bogyo.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–7 and Supplementary Methods (PDF 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgington, L., Berger, A., Blum, G. et al. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15, 967–973 (2009). https://doi.org/10.1038/nm.1938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing