Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress

Abstract

Production of bile by the liver is crucial for the absorption of lipophilic nutrients. Dysregulation of bile acid homeostasis can lead to cholestatic liver disease and endoplasmic reticulum (ER) stress. We show by global location analysis ('ChIP-on-chip') and cell type–specific gene ablation that the winged helix transcription factor Foxa2 is required for normal bile acid homeostasis. As suggested by the location analysis, deletion of Foxa2 in hepatocytes in mice using the Cre-lox system leads to decreased transcription of genes encoding bile acid transporters on both the basolateral and canalicular membranes, resulting in intrahepatic cholestasis. Foxa2-deficient mice are strikingly sensitive to a diet containing cholic acid, which results in toxic accumulation of hepatic bile salts, ER stress and liver injury. In addition, we show that expression of FOXA2 is markedly decreased in liver samples from individuals with different cholestatic syndromes, suggesting that reduced FOXA2 abundance could exacerbate the injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxa2 controls hepatic bile acid homeostasis and protects the liver from bile acid toxicity.
Figure 2: FOXA2 expression is reduced in human cholestatic livers.
Figure 3: Foxa2 regulates several genes involved in hepatic bile acid transport directly.
Figure 4: Foxa2 deficiency in the liver causes ER stress.
Figure 5: Foxa2 regulates the phase I detoxification enzyme, Cyp3a11.
Figure 6: A model for the regulation of hepatic bile acid homeostasis by Foxa2.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Kaestner, K.H. The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11, 281–285 (2000).

    Article  CAS  Google Scholar 

  2. Costa, R.H., Grayson, D.R. & Darnell, J.E., Jr. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and α1-antitrypsin genes. Mol. Cell. Biol. 9, 1415–1425 (1989).

    Article  CAS  Google Scholar 

  3. Ang, S.L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301–1315 (1993).

    CAS  PubMed  Google Scholar 

  4. Monaghan, A.P., Kaestner, K.H., Grau, E. & Schutz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 α, β and γ genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578 (1993).

    CAS  Google Scholar 

  5. Lee, C.S., Friedman, J.R., Fulmer, J.T. & Kaestner, K.H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    Article  CAS  Google Scholar 

  6. Zhang, L., Rubins, N.E., Ahima, R.S., Greenbaum, L.E. & Kaestner, K.H. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2, 141–148 (2005).

    Article  Google Scholar 

  7. Suzuki, K. et al. Epididymis-specific promoter–driven gene targeting: a transcription factor which regulates epididymis-specific gene expression. Mol. Cell. Endocrinol. 250, 184–189 (2006).

    Article  CAS  Google Scholar 

  8. Carroll, J.S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  Google Scholar 

  9. Laganiere, J. et al. From the Cover: Location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl. Acad. Sci. USA 102, 11651–11656 (2005).

    Article  CAS  Google Scholar 

  10. Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J.M. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027–1032 (2004).

    Article  CAS  Google Scholar 

  11. Lantz, K.A. et al. Foxa2 regulates multiple pathways of insulin secretion. J. Clin. Invest. 114, 512–520 (2004).

    Article  CAS  Google Scholar 

  12. Rausa, F.M. et al. Elevated levels of hepatocyte nuclear factor 3β in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol. Cell. Biol. 20, 8264–8282 (2000).

    Article  CAS  Google Scholar 

  13. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1 and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  Google Scholar 

  14. Lu, T.T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).

    Article  CAS  Google Scholar 

  15. Sinal, C.J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  Google Scholar 

  16. Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).

    Article  CAS  Google Scholar 

  17. Fischer, S., Beuers, U., Spengler, U., Zwiebel, F.M. & Koebe, H.G. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin. Chim. Acta 251, 173–186 (1996).

    Article  CAS  Google Scholar 

  18. Zollner, G. et al. Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G798–G805 (2005).

    Article  CAS  Google Scholar 

  19. Kullak-Ublick, G.A., Stieger, B. & Meier, P.J. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126, 322–342 (2004).

    Article  CAS  Google Scholar 

  20. Eloranta, J.J. & Kullak-Ublick, G.A. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophys. 433, 397–412 (2005).

    Article  CAS  Google Scholar 

  21. Mennone, A. et al. Mrp4−/− mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 43, 1013–1021 (2006).

    Article  CAS  Google Scholar 

  22. Hagenbuch, B. & Meier, P.J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609, 1–18 (2003).

    Article  CAS  Google Scholar 

  23. Lam, P., Wang, R. & Ling, V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry 44, 12598–12605 (2005).

    Article  CAS  Google Scholar 

  24. Fernandez-Checa, J.C., Takikawa, H., Horie, T., Ookhtens, M. & Kaplowitz, N. Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. J. Biol. Chem. 267, 1667–1673 (1992).

    CAS  PubMed  Google Scholar 

  25. Geier, A. et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J. Hepatol. 43, 1021–1030 (2005).

    Article  CAS  Google Scholar 

  26. Ruiz, M.L. et al. Beneficial effect of spironolactone administration on ethynylestradiol-induced cholestasis in the rat: involvement of up-regulation of multidrug resistance–associated protein 2. Drug Metab. Dispos. 35, 2060–2066 (2007).

    Article  CAS  Google Scholar 

  27. Ballatori, N. & Truong, A.T. Glutathione as a primary osmotic driving force in hepatic bile formation. Am. J. Physiol. 263, G617–G624 (1992).

    CAS  PubMed  Google Scholar 

  28. Zollner, G. et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33, 633–646 (2001).

    Article  CAS  Google Scholar 

  29. Oswald, M., Kullak-Ublick, G.A., Paumgartner, G. & Beuers, U. Expression of hepatic transporters OATP-C and MRP2 in primary sclerosing cholangitis. Liver 21, 247–253 (2001).

    Article  CAS  Google Scholar 

  30. Zhang, Y., Kast-Woelbern, H.R. & Edwards, P.A. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem. 278, 104–110 (2003).

    Article  CAS  Google Scholar 

  31. Guo, G.L. et al. Complementary roles of farnesoid X receptor, pregnane X receptor and constitutive androstane receptor in protection against bile acid toxicity. J. Biol. Chem. 278, 45062–45071 (2003).

    Article  CAS  Google Scholar 

  32. Shih, D.Q. et al. Hepatocyte nuclear factor-1α is an essential regulator of bile acid and plasma cholesterol metabolism. Nat. Genet. 27, 375–382 (2001).

    Article  CAS  Google Scholar 

  33. Coffinier, C. et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 129, 1829–1838 (2002).

    CAS  PubMed  Google Scholar 

  34. Inoue, Y., Yu, A.M., Inoue, J. & Gonzalez, F.J. Hepatocyte nuclear factor 4α is a central regulator of bile acid conjugation. J. Biol. Chem. 279, 2480–2489 (2004).

    Article  CAS  Google Scholar 

  35. Hubbard, B. et al. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology 130, 1259–1269 (2006).

    Article  CAS  Google Scholar 

  36. Bernstein, H. et al. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol. Lett. 108, 37–46 (1999).

    Article  CAS  Google Scholar 

  37. Riggs, A.C. et al. Mice conditionally lacking the Wolfram gene in pancreatic islet β cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48, 2313–2321 (2005).

    Article  CAS  Google Scholar 

  38. Menendez-Benito, V., Verhoef, L.G., Masucci, M.G. & Dantuma, N.P. Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum. Mol. Genet. 14, 2787–2799 (2005).

    Article  CAS  Google Scholar 

  39. Zhao, L., Longo-Guess, C., Harris, B.S., Lee, J.W. & Ackerman, S.L. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat. Genet. 37, 974–979 (2005).

    Article  CAS  Google Scholar 

  40. Vendemiale, G., Grattagliano, I., Lupo, L., Memeo, V. & Altomare, E. Hepatic oxidative alterations in patients with extra-hepatic cholestasis. Effect of surgical drainage. J. Hepatol. 37, 601–605 (2002).

    Article  CAS  Google Scholar 

  41. Zollner, G., Marschall, H.U., Wagner, M. & Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm. 3, 231–251 (2006).

    Article  CAS  Google Scholar 

  42. Xie, W. et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. USA 98, 3375–3380 (2001).

    Article  CAS  Google Scholar 

  43. Staudinger, J.L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA 98, 3369–3374 (2001).

    Article  CAS  Google Scholar 

  44. Bombail, V., Taylor, K., Gibson, G.G. & Plant, N. Role of Sp1, C/EBP α, HNF3, and PXR in the basal- and xenobiotic-mediated regulation of the CYP3A4 gene. Drug Metab. Dispos. 32, 525–535 (2004).

    Article  CAS  Google Scholar 

  45. Sund, N.J. et al. Hepatocyte nuclear factor 3β (Foxa2) is dispensable for maintaining the differentiated state of the adult hepatocyte. Mol. Cell. Biol. 20, 5175–5183 (2000).

    Article  CAS  Google Scholar 

  46. Denson, L.A. et al. The orphan nuclear receptor, Shp, mediates bile acid–induced inhibition of the rat bile acid transporter, Ntcp. Gastroenterology 121, 140–147 (2001).

    Article  CAS  Google Scholar 

  47. Zollner, G. et al. Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct–ligated mice. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G184–G191 (2002).

    Article  CAS  Google Scholar 

  48. Lai, E., Prezioso, V.R., Tao, W.F., Chen, W.S. & Darnell, J.E., Jr. Hepatocyte nuclear factor 3 α belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5, 416–427 (1991).

    Article  CAS  Google Scholar 

  49. Wang, R. et al. Targeted inactivation of sister of P-glycoprotein gene (Spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc. Natl. Acad. Sci. USA 98, 2011–2016 (2001).

    Article  CAS  Google Scholar 

  50. Wang, R. et al. Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 38, 1489–1499 (2003).

    Article  CAS  Google Scholar 

  51. Pauli-Magnus, C. et al. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39, 779–791 (2004).

    Article  CAS  Google Scholar 

  52. Besnard, V., Wert, S.E., Hull, W.M. & Whitsett, J.A. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr. Patterns 5, 193–208 (2004).

    Article  CAS  Google Scholar 

  53. Rubins, N.E. et al. Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2. Mol. Cell. Biol. 25, 7069–7077 (2005).

    Article  CAS  Google Scholar 

  54. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.D. Moore for advice on the cholic acid diet; J.A. Whittsett (Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine) for providing rabbit polyclonal antibodies to Foxa2; K. Ma and L.E. Greenbaum for critical reading of the manuscript; D. Ye, A. Arsenlis, G. Tuteja and N. Gao for contributions to this project; and E. Rand, and the Fred and Suzanne Biesecker Pediatric Liver Center for providing pediatric liver samples. We are grateful to S. Hammani and E. Helmbrecht for care of the mice. Our studies were assisted by the University of Pennsylvania Diabetes Center (P30DK19525). This work was supported by grants DK-049210 and DK-056947 to K.H.K. I.M.B. was supported by training grant T32-HG000046 and a Penn Genomics Institute Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

I.M.B. developed the project, performed most of the experiments and data analysis and wrote the draft of the manuscript. N.E.R. and P.W. performed some of the experiments and data analysis. E.E.F. and J.R.F. contributed to the human tissue studies. K.H.K. directed the project and reviewed and edited the manuscript.

Corresponding author

Correspondence to Klaus H Kaestner.

Supplementary information

Supplementary Text and Figures

Supplementary Fig. 1, Supplementary Tables 1–3 and Supplementary Methods (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkis, I., Rubins, N., White, P. et al. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 14, 828–836 (2008). https://doi.org/10.1038/nm.1853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing