Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis

Abstract

We have administered a recombinant adenovirus vector (AdCFTR) containing the normal human CFTR cDNA to the nasal and bronchial epithelium of four individuals with cystic fibrosis (CF). We show that this vector can express the CFTR cDNA in the CF respiratory epithelium in vivo. With doses up to 2 × 109 pfu, there was no recombination/complementation or shedding of the vector or rise of neutralizing antibody titres. At 2 × 109 pfu, a transient systemic and pulmonary syndrome was observed, possibly mediated by interleukin-6. Follow-up at 6–12 months demonstrated no long term adverse effects. Thus, it is feasible to use an adenovirus vector to transfer and express the CFTR cDNA in the respiratory epithelium of individuals with CF. Correction of the CF phenotype of the airway epithelium might be achieved with this strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boat, T.F., Welsh, M.J. & Beaudet, A.L. Cystic fibrosis. in The Metabolic Basis of Inherited Disease. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D. ) 2649–2680 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. Rommens, J.M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kerem, B.-S. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Gregory, R.J. et al. Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347, 382–386 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Welsh, M.J. et al. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8, 821–829 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, S.H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, F.S. Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774–779 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Welsh, M.J. & Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Beddrossian, C.W.M., Greenberg, S.D., Singer, D.B., Hansen, J.J. & Rosenberg, H.S. The lung in cystic fibrosis: a qualitative study including prevalence of pathologic findings among different age groups. Hum. Pathol. 7, 195–204 (1976).

    Article  Google Scholar 

  11. Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Drumm, M.L. et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62, 1227–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Rich, D.P. et al. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347, 358–363 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Blaese, R.M. et al. The ADA human gene therapy clinical protocol. Hum. gene Ther. 1, 327–362 (1990).

    Article  Google Scholar 

  15. Grossman, M. et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nature Genet. 6, 335–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Crystal, R.G. Protocol for gene therapy of the respiratory manifestations of cystic fibrosis using a replication deficient recombinant adenovirus to transfer the normal cystic fibrosis transmembrane conductance regulator cDNA to the airway epithelium. Fed. Register 58, 21737–21738 (1992).

    Google Scholar 

  17. Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mastrangeli, A. et al. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J. clin. Invest. 91, 225–234 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huebner, R.J. et al. Newly recognized respiratory tract viruses. in A. Rev. Microbiol. 12, 49–76 (1958).

    Article  CAS  Google Scholar 

  20. Straus, S.E. Adenovirus infections in humans. in The Adenoviruses. (ed. Ginsberg, H. S. ) 451–496 (Plenum Press, New York, 1984).

    Chapter  Google Scholar 

  21. Rosenfeld, M.A. et al. Gene transfer to freshly isolated human respiratory epithelial cells in vitro using a replication deficient adenovirus containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum. gene Ther. 5, 331–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Horowitz, M.S. Adenoviridae and their replicationin Virology. (eds Fields, B.N. & Knipe, D.M.) 1679–1740 (Raven Press, New York, 1990).

    Google Scholar 

  23. Welsh, M.J. Cystic fibrosis gene therapy using an adenovirus vector: in vivo safety and efficacy in the nasal epithelium. Fed. Register 58, 21737 (1992).

    Google Scholar 

  24. Wilson, J.M. Gene therapy of cystic fibrosis lung diseases using E1 deleted adenovirus: A phase 1 trial. Fed. Register 58, 47906 (1992).

    Google Scholar 

  25. Boucher, R.C. & Knowles, M.R. Gene therapy for cystic fibrosis using E1 deleted adenovirus: A Phase I trial in the nasal cavity. Fed. Register 58, 53814 (1993).

    Google Scholar 

  26. Wilmott, R.W., Whitsett, J. & Trapnell, B. A phase I study of gene therapy of cystic fibrosis utilizing a replication deficient recombinant adenovirus vector to deliver the human cystic fibrosis transmembrane conductance regulator cDNA to the airways. Fed. Register 58, 21739 (1993).

    Google Scholar 

  27. Rich, D.P. et al. Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis. Hum. Gene Ther. 4, 461–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Englehardt, J.F. et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nature Genet. 4, 27–34.

  29. Zabner, J. et al. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nature Genet. 6, 75–83 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Bout, A. et al. Lung gene therapy: In-vivo adenovirus-mediated gene transfer to rhesus monkey airway epithelium. Hum. Gene Ther. 5, 3–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Englehardt, J.F. et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: biological efficacy study. Hum. gene Ther. 4, 759–769 (1993).

    Article  Google Scholar 

  32. Brody, S.L., Metzger, M., Danel, C., Rosenfeld, M. & Crystal, R.G. Acute responses of non-human primates to airway delivery of an adenovirus vector containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum. gene Ther. 5, (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Danel, C., Erzurum, S.C., Yoneyama, K., Thunnissen, F.B.J.M. & Crystal, R.G. Quantitative assessment of human airway epithelial and inflammatory cell populations in cystic fibrosis. Am. Rev. respir. Dis. 145, A689 (1992).

    Google Scholar 

  34. Zabner, J. et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Graham, F.L. & Smiley, J. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. gen. Virol. 36, 59–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Spergel, J.M. & Selina, C.-K. lnterleukin-6 enhances a cellular activity that functionally substitutes for E1A protein in transactivation. Proc. natn. Acad. Sci. U.S.A. 88, 6472–6476 (1991).

    Article  CAS  Google Scholar 

  37. Spergel, J.M. et al. NF-IL6, a member of the C/EBP family, regulates E1A-responsive promoters in the absence of E1A. J. Virol. 66, 1021–1030 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Couch, R.B., Cate, T.R., Fleet, W.F., Gerone, P.J. & Knight, V. Aerosol-induced adenoviral illness resembling the naturally occurring illness in military recruits. Am. Rev. respir. Dis. 93, 529–535 (1966).

    CAS  PubMed  Google Scholar 

  39. Ginsberg, H.S., Badger, G.F., Dingle, J.H., Jordan, W.S. Jr., & Katz, S. Etiologic relationship of the RI-67 agent to “acute” respiratory disease (ARD). J. clin. Invest. 34, 820–831 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fox, J.P. et al. The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VI. Observations of adenovirus infections: Virus excretion patterns, antibody response, efficiency of surveillance, patterns of Infection, and relation to illness. Am. J. Epidemiol. 89, 25 (1969).

    Article  CAS  PubMed  Google Scholar 

  41. Simon, R.H. et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: Toxicity study. Hum. Gene Ther. 4, 771–780 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Setoguchi, Y., Jaffe, H.A., Chu, C.-S. & Crystal, R.G. Intraperitoneal In vivo gene therapy to deliver α1-antitrpysin to the systemic circulation. Am. J. respir. Cell molec. Biol. 10, 369–377 (1994).

    Article  CAS  Google Scholar 

  43. Englehardt, J., Simon, R., Zepeda, M., Yang, Y. & Wilson, J.M. Safety and efficacy of recombinant adenoviruses for lung directed gene therapy in nonhuman primates. Pediatr. Pulmonol. 9, S16.4 (1993).

    Google Scholar 

  44. Smith, T.A.G. et al. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nature Genet. 5, 397–402 (1994).

    Article  Google Scholar 

  45. Van Snick, J. Interteukin-6: An overview. A. Rev. Immunol. 8, 253–278 (1990).

    Article  CAS  Google Scholar 

  46. Kishimoto, T., Shizuo, A. & Tetsuya, T. Interleukin-6 and its receptor: a paradigm for cytokines. Science 256, 593–597 (1992).

    Article  Google Scholar 

  47. Weber, J. et al. Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J. clin. Oncol. 11, 499–506 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Xin, Z., Jordana, M., Braciak, T., Ohtoshi, T. & Gauldie, J. Lipopolysaccharide induces expression of granulocyte/macrophage colony-stimulating factor, interleukin-8, and interleukin-6 in human nasal, but not lung, fibroblasts: Evidence for heterogeneity within the respiratory tract. Am. J. resp. Cell molec. Biol. 9, 225–263 (1993).

    Google Scholar 

  49. Ruef, C., Jefferson, D.M., Schlegel-Haueter, S.E. & Suter, S. Regulation of cytokine secretion by cystic fibrosis airway epithelial cells. Eur. Respir. J. 6, 1429–1436 (1993).

    CAS  PubMed  Google Scholar 

  50. Melani, C. et al. Interteukin-6 expression in human neutrophil and eosinophil peripheral blood granulocytes. Blood 81, 2744–2749 (1993).

    CAS  PubMed  Google Scholar 

  51. Kronborg, G. et al. Cytokines in sputum and serum from patients with cystic fibrosis and chronic Pseudomonas aeruginosa infection as markers of destructive inflammation in the lungs. Pediatr. Pulmonol. 15, 292–297 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Bonfield, T.L., Ghnaim, H.A., Panuska, J.R., Konstan, M. & Berger, M. Cytokines in cystic fibrosis BAL. Pediatr. Pulmonol. 8, A312 (1993).

    Google Scholar 

  53. Devergne, O. et al. In vivo expression of IL-1 beta and IL-6 genes during viral infections in human. Eur. Cytokine Netw. 2, 183–194 (1991).

    CAS  PubMed  Google Scholar 

  54. Ginsberg, H.S. et al. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc. natn. Acad. Sci. U.S.A. 88, 1651–1655 (1991).

    Article  CAS  Google Scholar 

  55. Ryffel, B., Mihatsch, M.J. & Woerly, G. Pathology induced by interieukin-6. Int. Rev. exp. Path. 34A, 79–89 (1993).

    CAS  Google Scholar 

  56. Hack, C.E. et al. Increased plasma levels of interieukin-6 in sepsis. Blood 74, 1704–1710 (1989).

    CAS  PubMed  Google Scholar 

  57. Fiers, W. Tumor necrosis factor: characterization at the molecular, cellular and in vivo level. FEBS Lett. 285, 199–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, S.F. et al. Comparison of human lung surface protein profiles from central and peripheral airways sampled using two regional lavage techniques. Eur. Respir. J. 1, 792–800 (1988).

    CAS  PubMed  Google Scholar 

  59. Minor modification to NIH-approved human gene transfer protocols, August 26, 1993 (Office of Recombinant DNA Activities, NIH, Bethesda, Maryland, USA).

  60. Ginsberg, H.S. et al. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc. natn. Acad. Sci. U.S.A. 86, 3823–3827 (1989).

    Article  CAS  Google Scholar 

  61. Kasel, J.A. Adenovirus. in Diagonostic Procedures for Viral, Ricketsial and Chlamydial Infections. (eds Lennette, E.M. & Schmidt, N.J. ) 229–255 (American Public Health Association, Washington, DC, 1979).

    Google Scholar 

  62. Trapnell, B.C. et al. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc. natn. Acad. Sci. U.S.A. 88, 6565–6569 (1991).

    Article  CAS  Google Scholar 

  63. Eissa, N.T., Chu, C.-S., Danel, C. & Crystal, R.G. Evaluation of the respiratory epithelium of normals and individuals with cystic fibrosis for the presence of adenovirus E1a sequences relevant to the use of E1a adenovirus vectors for gene therapy for the respiratory manifestations of cystic fibrosis. Hum. gene Ther. 5, 1105–1114 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Chu, C.-S, Trapnell, B.C., Curristin, S.M., Cutting, G.R. & Crystal, R.G. Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-bindlng fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J. clin. Invest. 90, 785–790 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  66. Knowles, M., Gatzy, J. & Boucher, R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. New Engl. J. Med. 305, 1489–1495 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Saltini, C. et al. Maintenance of alveolitis in patients with chronic beryllium-specific helper T cells. New Engl. J. Med. 320, 1103–1109 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crystal, R., McElvaney, N., Rosenfeld, M. et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8, 42–51 (1994). https://doi.org/10.1038/ng0994-42

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0994-42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing