Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia

Abstract

Tissue stromal cells interact with leukaemia cells and profoundly affect their viability and drug sensitivity. Here we show a biochemical mechanism by which bone marrow stromal cells modulate the redox status of chronic lymphocytic leukaemia (CLL) cells and promote cellular survival and drug resistance. Primary CLL cells from patients exhibit a limited ability to transport cystine for glutathione (GSH) synthesis owing to a low expression level of Xc-transporter. In contrast, bone marrow stromal cells effectively import cystine and convert it to cysteine, which is then released into the microenvironment for uptake by CLL cells to promote GSH synthesis. The elevated level of GSH enhances leukaemia cell survival and protects them from drug-induced cytotoxicity. Furthermore, disabling this protective mechanism significantly sensitizes CLL cells to drug treatment in the stromal environment. This stromal–leukaemia interaction is critical for CLL cell survival and represents a key biochemical pathway for effectively targeting leukaemia cells to overcome drug resistance in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone marrow stromal cells enhanced GSH synthesis in CLL cells and relieved their ROS stress.
Figure 2: Critical role of GSH in mediating stromal protection of CLL cells from spontaneous and drug-induced cell death.
Figure 3: The LMW fraction of the stromal medium enhanced GSH synthesis in CLL cells and promoted cell survival.
Figure 4: Generation of cysteine by bone marrow stromal cells was essential to enhance GSH synthesis in CLL cells and promote their survival.
Figure 5: Leukaemia cells (CLL) exhibited a low ability to directly use cystine and were dependent on stromal cells to convert cystine to cysteine for GSH synthesis.
Figure 6: Overcoming stromal-induced drug resistance in CLL cells by depleting GSH in leukaemia cells or blocking cystine uptake by stromal cells.
Figure 7: Effect of abolishing GSH protection on CLL cells by blocking cystine uptake by stromal cells in vivo.

Similar content being viewed by others

References

  1. Zwiebel, J. A. & Cheson, B. D. Chronic lymphocytic leukemia: staging and prognostic factors. Semin. Oncol. 25, 42–59 (1998).

    CAS  PubMed  Google Scholar 

  2. Keating, M. J. et al. Biology and treatment of chronic lymphocytic leukemia. Hematology/the Education Program of the American Society of Hematology. Am. Soc. Hematol. 153–175 (2003).

  3. Chiorazzi, N., Rai, K. R. & Ferrarini, M. Chronic lymphocytic leukemia. New Engl.J. Med. 352, 804–815 (2005).

    Article  CAS  Google Scholar 

  4. Tam, C. S. & Keating, M. J. Chemoimmunotherapy of chronic lymphocytic leukemia. Best Practice Res. 20, 479–498 (2007).

    CAS  Google Scholar 

  5. Rai, K. R. & Chiorazzi, N. Determining the clinical course and outcome in chronic lymphocytic leukemia. New Engl. J. Med. 348, 1797–1799 (2003).

    Article  Google Scholar 

  6. Collins, R. J. et al. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br. J. Haematol. 71, 343–350 (1989).

    Article  CAS  Google Scholar 

  7. Munk Pedersen, I. & Reed, J. Microenvironmental interactions and survival of CLL B-cells. Leuk. Lymphoma 45, 2365–2372 (2004).

    Article  CAS  Google Scholar 

  8. Lagneaux, L., Delforge, A., Bron, D., De Bruyn, C. & Stryckmans, P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91, 2387–2396 (1998).

    CAS  Google Scholar 

  9. Grdisa, M. Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk. Res. 27, 951–956 (2003).

    Article  CAS  Google Scholar 

  10. Dancescu, M. et al. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J. Exp. Med. 176, 1319–1326 (1992).

    Article  CAS  Google Scholar 

  11. Jewell, A. P. et al. Interferon- α up-regulates bcl-2 expression and protects B-CLL cells from apoptosis in vitro and in vivo. Br. J. Haematol. 88, 268–274 (1994).

    Article  CAS  Google Scholar 

  12. Buschle, M. et al. Interferon γ inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J. Exp. Med. 177, 213–218 (1993).

    Article  CAS  Google Scholar 

  13. Konig, A. et al. Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 11, 258–265 (1997).

    Article  CAS  Google Scholar 

  14. Burger, J. A. et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96, 2655–2663 (2000).

    CAS  PubMed  Google Scholar 

  15. Endo, T. et al. BAFF and APRIL support chronic lymphocytic leukemia B-cellsurvival through activation of the canonical NF-κB pathway. Blood 109, 703–710 (2007).

    Article  CAS  Google Scholar 

  16. Hegde, G. V. et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol. Cancer Res. 6, 1928–1936 (2008).

    Article  CAS  Google Scholar 

  17. Lawton, K. A. et al. Analysis of the adult human plasma metabolome. Pharmacogenomics 9, 383–397 (2008).

    Article  CAS  Google Scholar 

  18. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  Google Scholar 

  19. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).

    Article  CAS  Google Scholar 

  20. Zhou, Y., Hileman, E. O., Plunkett, W., Keating, M. J. & Huang, P. Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101, 4098–4104 (2003).

    Article  CAS  Google Scholar 

  21. Oltra, A. M., Carbonell, F., Tormos, C., Iradi, A. & Saez, G. T. Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic. Biol. Med. 30, 1286–1292 (2001).

    Article  CAS  Google Scholar 

  22. Carew, J. S. et al. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 17, 1437–1447 (2003).

    Article  CAS  Google Scholar 

  23. Trachootham, D. et al. Effective elimination of fludarabine-resistant CLLcells by PEITC through a redox-mediated mechanism. Blood 112, 1912–1922 (2008).

    Article  CAS  Google Scholar 

  24. Silber, R. et al. Glutathione depletion in chronic lymphocytic leukemia B lymphocytes. Blood 80, 2038–2043 (1992).

    CAS  PubMed  Google Scholar 

  25. Hileman, E. O., Liu, J., Albitar, M., Keating, M. J. & Huang, P. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother. Pharmacol. 53, 209–219 (2004).

    Article  CAS  Google Scholar 

  26. Kurtova, A. V. et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114, 4441–4450 (2009).

    Article  CAS  Google Scholar 

  27. Woodlock, T. J. et al. Decreased L system amino acid transport and decreased γ-glutamyl transpeptidase are independent processes in human chronic lymphocytic leukemia B-lymphocytes. J. Cell Physiol. 145, 217–221 (1990).

    Article  CAS  Google Scholar 

  28. Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell. 10, 241–252 (2006).

    Article  CAS  Google Scholar 

  29. Lu, S. C. Regulation of glutathione synthesis. Curr. Top. Cell. Regul. 36, 95–116 (2000).

    Article  CAS  Google Scholar 

  30. Jones, D. P. & Liang, Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 47, 1329–1338 (2009).

    Article  CAS  Google Scholar 

  31. Sato, H. et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280, 37423–37429 (2005).

    Article  CAS  Google Scholar 

  32. Haslinger, C. et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J. Clin. Oncol. 22, 3937–3949 (2004).

    Article  CAS  Google Scholar 

  33. Zenz, T. et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114, 2589–2597 (2009).

    Article  CAS  Google Scholar 

  34. Turgut, B. et al. 17p Deletion is associated with resistance of B-cell chronic lymphocytic leukemia cells to in vitro fludarabine-induced apoptosis. Leuk. Lymphoma 48, 311–320 (2007).

    Article  CAS  Google Scholar 

  35. Huang, Y., Dai, Z., Barbacioru, C. & Sadee, W. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 65, 7446–7454 (2005).

    Article  CAS  Google Scholar 

  36. Gout, P. W., Buckley, A. R., Simms, C. R. & Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 15, 1633–1640 (2001).

    Article  CAS  Google Scholar 

  37. Moufarij, M. A., Sampath, D., Keating, M. J. & Plunkett, W. Fludarabineincreases oxaliplatin cytotoxicity in normal and chronic lymphocytic leukemia lymphocytes by suppressing interstrand DNA crosslink removal. Blood 108, 4187–4193 (2006).

    Article  CAS  Google Scholar 

  38. Graham, M. A. et al. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin. Cancer Res. 6, 1205–1218 (2000).

    CAS  PubMed  Google Scholar 

  39. Danhauser, L., Plunkett, W., Keating, M. & Cabanillas, F. 9- β-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother. Pharmacol. 18, 145–152 (1986).

    Article  CAS  Google Scholar 

  40. Bichi, R. et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc. Natl Acad. Sci. USA 99, 6955–6960 (2002).

    Article  CAS  Google Scholar 

  41. Reed, J. C. Molecular biology of chronic lymphocytic leukemia. Semin. Oncol. 25, 11–18 (1998).

    CAS  PubMed  Google Scholar 

  42. Caligaris-Cappio, F. Biology of chronic lymphocytic leukemia. Rev. Clin. Exp. Hematol. 4, 5–21 (2000).

    Article  CAS  Google Scholar 

  43. Bannai, S. Transport of cystine and cysteine in mammalian cells. Biochim. Biophys. Acta 779, 289–306 (1984).

    Article  CAS  Google Scholar 

  44. Iglehart, J. K., York, R. M., Modest, A. P., Lazarus, H. & Livingston, D. M. Cystine requirement of continuous human lymphoid cell lines of normal and leukemic origin. J. Biol. Chem. 252, 7184–7191 (1977).

    CAS  PubMed  Google Scholar 

  45. Uren, J. R. & Lazarus, H. L-cyst(e)ine requirements of malignant cells and progress toward depletion therapy. Cancer Treatment Rep. 63, 1073–1079 (1979).

    CAS  Google Scholar 

  46. Hyde, R., Taylor, P. M. & Hundal, H. S. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373, 1–18 (2003).

    Article  CAS  Google Scholar 

  47. Liu, R. et al. Cystine-glutamate transporter SLC7A11 mediates resistance to geldanamycin but not to 17-(allylamino)-17-demethoxygeldanamycin. Mol. Pharm. 72, 1637–1646 (2007).

    Article  CAS  Google Scholar 

  48. Lo, M., Wang, Y. Z. & Gout, P. W. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J. Cell. Physiol. 215, 593–602 (2008).

    Article  CAS  Google Scholar 

  49. Okuno, S. et al. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br. J. Cancer 88, 951–956 (2003).

    Article  CAS  Google Scholar 

  50. Chawla, R. K. et al. Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology 87, 770–776 (1984).

    Article  CAS  Google Scholar 

  51. Lu, S. C. Regulation of glutathione synthesis. Mol. Aspects Med. 30, 42–59 (2009).

    Article  CAS  Google Scholar 

  52. Franco, R., Panayiotidis, M. I. & Cidlowski, J. A. Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J. Biol. Chem. 282, 30452–30465 (2007).

    Article  CAS  Google Scholar 

  53. Franco, R., DeHaven, W. I., Sifre, M. I., Bortner, C. D. & Cidlowski, J. A. Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J. Biol. Chem. 283, 36071–36087 (2008).

    Article  CAS  Google Scholar 

  54. Tew, K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54, 4313–4320 (1994).

    CAS  PubMed  Google Scholar 

  55. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. 7, 573–584 (2007).

    Article  CAS  Google Scholar 

  56. Roecklein, B. A. & Torok-Storb, B. Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85, 997–1005 (1995).

    CAS  PubMed  Google Scholar 

  57. Kawano, Y. et al. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood 101, 532–540 (2003).

    Article  CAS  Google Scholar 

  58. Matsumoto, S. et al. Membranous osteogenesis system modeled with KUSA-A1 mature osteoblasts. Biochim. Biophys. Acta 1725, 57–63 (2005).

    Article  CAS  Google Scholar 

  59. Huang, P., Sandoval, A., Van Den Neste, E., Keating, M. J. & Plunkett, W. Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia 14, 1405–1413 (2000).

    Article  CAS  Google Scholar 

  60. Pelicano, H. et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem. 278, 37832–37839 (2003).

    Article  CAS  Google Scholar 

  61. Pepper, C., Thomas, A., Hoy, T., Fegan, C. & Bentley, P. Flavopiridolcircumvents Bcl-2 family mediated inhibition of apoptosis and drugresistance in B-cell chronic lymphocytic leukaemia. Br. J. Haematol. 114, 70–77 (2001).

    Article  CAS  Google Scholar 

  62. Campas, C. et al. Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia 17, 746–750 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. H. Hawke for expert assistance in LC–MS/MS analysis of cystine and cysteine, and B. A. Hayes, A. G. Melendez, M. A. Ogasawara, L. Feng and H. Zhang for technical assistance and helpful discussions. This work was supported in part by grants CA085563 and CA100428 from the National Institutes of Health, grant PR110322 from CPRIT and a grant for the CLL Global Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

W.Z.: project planning, experimental work, data analysis and manuscript writing; D.T., J.L., G.C., C.G.P. and W.L.: experimental work and data analysis; H.P., J.A.B. and W.P.: project planning and data interpretation; C.M.C.: provided Tcl-1 transgenic mice; M.J.K.: provided CLL specimens and participated in project planning and data interpretation; P.H.: project planning, data analysis and manuscript writing.

Corresponding author

Correspondence to Peng Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Trachootham, D., Liu, J. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 14, 276–286 (2012). https://doi.org/10.1038/ncb2432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2432

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer