Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SHARPIN is an endogenous inhibitor of β1-integrin activation

Abstract

Regulated activation of integrins is critical for cell adhesion, motility and tissue homeostasis. Talin and kindlins activate β1-integrins, but the counteracting inhibiting mechanisms are poorly defined. We identified SHARPIN as an important inactivator of β1-integrins in an RNAi screen. SHARPIN inhibited β1-integrin functions in human cancer cells and primary leukocytes. Fibroblasts, leukocytes and keratinocytes from SHARPIN-deficient mice exhibited increased β1-integrin activity, which was fully rescued by re-expression of SHARPIN. We found that SHARPIN directly binds to a conserved cytoplasmic region of integrin α-subunits and inhibits recruitment of talin and kindlin to the integrin. Therefore, SHARPIN inhibits the critical switching of β1-integrins from inactive to active conformations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SHARPIN is an inhibitor of β1-integrin activity.
Figure 2: SHARPIN interacts with the conserved membrane proximal segment of integrin α-tails.
Figure 3: SHARPIN co-localizes with inactive β1-integrins in membrane ruffles and associates with them in cells.
Figure 4: SHARPIN directly interacts with β1-integrins in cells and inhibits recruitment of talin and kindlin to β1-integrins.
Figure 5: SHARPIN inhibits β1-integrin activity in primary human leukocytes.
Figure 6: Loss of SHARPIN correlates with increased β1-integrin activity in vivo.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  2. Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    Article  CAS  Google Scholar 

  3. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  Google Scholar 

  4. Larjava, H., Plow, E. F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).

    Article  CAS  Google Scholar 

  5. Margadant, C., Charafeddine, R. A. & Sonnenberg, A. Unique and redundant functions of integrins in the epidermis. FASEB J. 24, 4133–4152 (2010).

    Article  CAS  Google Scholar 

  6. Cantor, J. M., Ginsberg, M. H. & Rose, D. M. Integrin-associated proteins as potential therapeutic targets. Immunol. Rev. 223, 236–251 (2008).

    Article  CAS  Google Scholar 

  7. Hogg, N. & Bates, P. A. Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol. 19, 211–222 (2000).

    Article  CAS  Google Scholar 

  8. Evans, R. et al. Integrins in immunity. J. Cell Sci. 122, 215–225 (2009).

    Article  CAS  Google Scholar 

  9. Calderwood, D. A. Integrin activation. J. Cell Sci. 117, 657–666 (2004).

    Article  CAS  Google Scholar 

  10. Lim, S. et al. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell. Neurosci. 17, 385–397 (2001).

    Article  CAS  Google Scholar 

  11. Byron, A. et al. Anti-integrin monoclonal antibodies. J. Cell Sci. 122, 4009–4011 (2009).

    Article  CAS  Google Scholar 

  12. Taliaferro-Smith, L. et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28, 2621–2633 (2009).

    Article  CAS  Google Scholar 

  13. Ewart, M. A., Kohlhaas, C. F. & Salt, I. P. Inhibition of tumor necrosis factor α-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol. 28, 2255–2257 (2008).

    Article  CAS  Google Scholar 

  14. Guo, D. L. et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 27, 454–464 (2006).

    Article  CAS  Google Scholar 

  15. Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet. 36, 979–983 (2004).

    Article  CAS  Google Scholar 

  16. Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA 96, 13813–13818 (1999).

    Article  CAS  Google Scholar 

  17. Ivaska, J. et al. Integrin–protein kinase C relationships. Biochem. Soc. Trans. 31, 90–93 (2003).

    Article  CAS  Google Scholar 

  18. Harper, M. T. & Poole, A. W. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J. Thromb. Haemost. 8, 454–462 (2010).

    Article  CAS  Google Scholar 

  19. Jung, J. et al. Newly identified tumor-associated role of human Sharpin. Mol. Cell. Biochem. 340, 161–167 (2010).

    Article  CAS  Google Scholar 

  20. Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  21. Schwartz, M. A. & Assoian, R. K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114, 2553–2560 (2001).

    CAS  PubMed  Google Scholar 

  22. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  23. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  CAS  Google Scholar 

  24. Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21, 337–347 (2006).

    Article  CAS  Google Scholar 

  25. Anthis, N. J. et al. β integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J. Biol. Chem. 284, 36700–36710 (2009).

    Article  CAS  Google Scholar 

  26. Elliott, P. R. et al. The structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 18, 1289–1299 (2010).

    Article  CAS  Google Scholar 

  27. Hughes, P. E. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571–6574 (1996).

    Article  CAS  Google Scholar 

  28. LaFlamme, S. E., Akiyama, S. K. & Yamada, K. M. Regulation of fibronectin receptor distribution. J. Cell Biol. 117, 437–447 (1992).

    Article  CAS  Google Scholar 

  29. Chen, Y. P. et al. ‘Inside-out’ signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 269, 18307–18310 (1994).

    CAS  PubMed  Google Scholar 

  30. Parsons, M., Messent, A. J., Humphries, J. D., Deakin, N. O. & Humphries, M. J. Quantification of integrin receptor agonism by fluorescence lifetime imaging. J. Cell Sci. 121, 265–271 (2008).

    Article  CAS  Google Scholar 

  31. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  32. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  Google Scholar 

  33. Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 284, 11485–11497 (2009).

    Article  CAS  Google Scholar 

  34. Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008).

    Article  CAS  Google Scholar 

  35. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  Google Scholar 

  36. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  Google Scholar 

  37. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  Google Scholar 

  38. Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  39. Tuomi, S. et al. PKCε regulation of an α5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Sci. Signal. 2, ra32 (2009).

    Article  Google Scholar 

  40. Askari, J. A. et al. Focal adhesions are sites of integrin extension. J. Cell Biol. 188, 891–903 (2010).

    Article  CAS  Google Scholar 

  41. Liang, Y., Seymour, R. E. & Sundberg, J. P. Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol. 131, 141–149 (2011).

    Article  CAS  Google Scholar 

  42. Seymour, R. E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

    Article  CAS  Google Scholar 

  43. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    Article  CAS  Google Scholar 

  44. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    Article  CAS  Google Scholar 

  45. Millon-Fremillon, A. et al. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent β1-integrin affinity. J. Cell Biol. 180, 427–441 (2008).

    Article  CAS  Google Scholar 

  46. Nevo, J. et al. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene 29, 6452–6463 (2010).

    Article  CAS  Google Scholar 

  47. Clark, A. J., Neil, C., Gusterson, B., McWhir, J. & Binas, B. Deletion of the gene encoding H-FABP/MDGI has no overt effects in the mammary gland. Transgenic Res. 9, 439–444 (2000).

    Article  CAS  Google Scholar 

  48. Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009).

    Article  CAS  Google Scholar 

  49. He, L., Ingram, A., Rybak, A. P. & Tang, D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J. Clin. Invest. 120, 2094–2108 (2010).

    Article  CAS  Google Scholar 

  50. Landgraf, K. et al. Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol. Cell. Biol. 30, 5764–5775 (2010).

    Article  CAS  Google Scholar 

  51. Gustin, J. A., Maehama, T., Dixon, J. E. & Donner, D. B. The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor κB activity. J. Biol. Chem. 276, 27740–27744 (2001).

    Article  CAS  Google Scholar 

  52. Kilpinen, S. et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 9, R139 (2008).

    Article  Google Scholar 

  53. O’Toole, T. E. et al. Modulation of the affinity of integrin α IIb β3 (GPIIb-IIIa) by the cytoplasmic domain of α IIb. Science 254, 845–847 (1991).

    Article  Google Scholar 

  54. Rantala, J. K. et al. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 12, 162 (2011).

    Article  CAS  Google Scholar 

  55. Kraemer, A. et al. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J. Mol. Biol. 306, 1167–1177 (2001).

    Article  CAS  Google Scholar 

  56. Clark, K. et al. A specific α5β1-integrin conformation promotes directionalintegrin translocation and fibronectin matrix formation. J. Cell Sci. 118, 291–300 (2005).

    Article  CAS  Google Scholar 

  57. Hogan, B. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1986).

    Google Scholar 

  58. Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  Google Scholar 

  59. Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Marttila, J. Siivonen, L. Lahtinen, R. Kaukonen, E. Väänänen, K. Silva and A. Arola for technical assistance. P.R. Elliot is acknowledged for the recombinant talin 1–400 protein. R. Fässler, M. Ginsberg, J. Norman and S. Lee are acknowledged for the plasmids. This study has been supported by the Academy of Finland, EU-FP06 project ENLIGHT, a European Research Council Starting Grant, the Sigrid Juselius Foundation, the European Molecular Biology Organization (EMBO) Young Investigator Programme and Finnish Cancer Organizations. J.P. and E.M., Academy of Finland postdoc grant; T.P., Turku Graduate School of Biomedical Sciences; S.V., Alexander von Humbold foundation and an EMBO long-term fellowship. C.S.P. and J.P.S were supported by the National Institutes of Health (T32 DK07449-28 to C.S.P. and AR49288 to J.P.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.K.R. and O.K. developed cell spot microarrays, J.K.R. and T.P. carried out the screen. J.K.R., J.P., P.L., S.V. and J.I. carried out the experiments. E.M. immortalized the MEFs. M.P. carried out the FRET-FLIM, C.S.P, T.D. and J.P.S. contributed to the mouse data, J.A.A. and M.J.H. contributed to the legs together integrin experiments and M.S. contributed to the leukocyte work. J.P., J.I. and M.S. wrote the manuscript.

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 694 kb)

Supplementary Table 1

Supplementary Information (XLS 31 kb)

Supplementary Table 2

Supplementary Information (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantala, J., Pouwels, J., Pellinen, T. et al. SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat Cell Biol 13, 1315–1324 (2011). https://doi.org/10.1038/ncb2340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing