Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

pVHL and GSK3β are components of a primary cilium-maintenance signalling network

Abstract

Defects in the structure or function of the primary cilium, an antennae-like structure whose functional integrity has been linked to the suppression of uncontrolled kidney epithelial cell proliferation, are a common feature of genetic disorders characterized by kidney cysts1,2. However, the mechanisms by which primary cilia are maintained remain poorly defined. von Hippel-Lindau (VHL) disease is characterized by the development of premalignant renal cysts and arises because of functional inactivation of the VHL tumour suppressor gene product, pVHL3,4. Here, we show that pVHL and glycogen synthase kinase (GSK)3β are key components of an interlinked signalling pathway that maintains the primary cilium. Although inactivation of either pVHL or GSK3β alone did not affect cilia maintenance, their combined inactivation leads to loss of cilia. In VHL patients, GSK3β is subjected to inhibitory phosphorylation in renal cysts, but not in early VHL mutant lesions, and these cysts exhibit reduced frequencies of primary cilia. We propose that pVHL and GSK3β function together in a ciliary-maintenance signalling network, disruption of which enhances the vulnerability of cells to lose their cilia, thereby promoting cyst formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pVHL localizes to primary cilia but loss of pVHL does not affect primary cilia structure in primary cells.
Figure 2: Serum restimulation leads to loss of primary cilia in pVHL-deficient cells.
Figure 3: GSK-3β and pVHL redundantly maintain primary cilia.
Figure 4: pVHL mutants with impaired microtubule stabilizing function fail to rescue cilia maintenance on inhibition of GSK3 in RCC-4 cells.
Figure 5: Loss of pVHL function and inhibitory phosphorylation of GSK3β correlate with reduced frequency of ciliated cells in renal cysts in VHL patients.

Similar content being viewed by others

References

  1. Davenport, J. R. & Yoder, B. K. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol. 289, F1159–F1169 (2005).

    Article  CAS  Google Scholar 

  2. Eley, L., Yates, L. M. & Goodship, J. A. Cilia and disease. Curr. Opin. Genet. Dev. 15, 308–314 (2005).

    Article  CAS  Google Scholar 

  3. Choyke, P. L. et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. Am. J. Roentgenol. 159, 1229–1234 (1992).

    Article  CAS  Google Scholar 

  4. Solomon, D. & Schwartz, A. Renal pathology in von Hippel-Lindau disease. Human Pathol. 19, 1072–1079 (1988).

    Article  CAS  Google Scholar 

  5. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  6. Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nature Cell Biol. 5, 64–70 (2003).

    Article  CAS  Google Scholar 

  7. Lolkema, M. P. et al. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery. Exp. Cell Res. 301, 139–146 (2004).

    Article  CAS  Google Scholar 

  8. Praetorius, H. A., Praetorius, J., Nielsen, S., Frokiaer, J. & Spring, K. R. β1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am. J. Physiol. Renal. Physiol. 287, F969–F978 (2004).

    Article  CAS  Google Scholar 

  9. Schneider, L. et al. PDGFRα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    Article  CAS  Google Scholar 

  10. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).

    Article  CAS  Google Scholar 

  11. Praetorius, H. A. & Spring, K. R. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69–76 (2003).

    Article  CAS  Google Scholar 

  12. Alieva, I. B., Gorgidze, L. A., Komarova, Y. A., Chernobelskaya, O. A. & Vorobjev, I. A. Experimental model for studying the primary cilia in tissue culture cells. Membr. Cell Biol. 12, 895–905 (1999).

    CAS  PubMed  Google Scholar 

  13. Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc. Natl Acad. Sci. USA 98, 1583–1588 (2001).

    Article  CAS  Google Scholar 

  14. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  15. Esteban, M. A., Harten, S. K., Tran, M. G. & Maxwell, P. H. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J. Am. Soc. Nephrol. 17, 1801–1806 (2006).

    Article  CAS  Google Scholar 

  16. Lutz, M. S. & Burk, R. D. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res. 66, 6903–6907 (2006).

    Article  CAS  Google Scholar 

  17. Schermer, B. et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J. Cell Biol. 175, 547–554 (2006).

    Article  CAS  Google Scholar 

  18. Zhou, F. Q. & Snider, W. D. Cell biology. GSK-3β and microtubule assembly in axons. Science 308, 211–214 (2005).

    Article  CAS  Google Scholar 

  19. Wilson, N. F. & Lefebvre, P. A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell 3, 1307–1319 (2004).

    Article  CAS  Google Scholar 

  20. Hergovich, A. et al. Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol. Cell Biol. 26, 5784–5796 (2006).

    Article  CAS  Google Scholar 

  21. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  22. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G., Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  Google Scholar 

  23. Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  24. Knauth, K., Bex, C., Jemth, P. & Buchberger, A. Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1α interactions. Oncogene 25, 370–377 (2006).

    Article  CAS  Google Scholar 

  25. Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 359, 1–16 (2001).

    Article  CAS  Google Scholar 

  26. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  Google Scholar 

  27. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  Google Scholar 

  28. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  Google Scholar 

  29. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66, 2576–2583 (2006).

    Article  CAS  Google Scholar 

  30. Brauch, H. et al. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum. Genet. 95, 551–556 (1995).

    Article  CAS  Google Scholar 

  31. Chen, F. et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum. Mutat. 5, 66–75 (1995).

    Article  CAS  Google Scholar 

  32. Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).

    Article  CAS  Google Scholar 

  33. Pastorekova, S., Zavadova, Z., Kostal, M., Babusikova, O. & Zavada, J. A novel quasi-viral agent, MaTu, is a two-component system. Virology 187, 620–626 (1992).

    Article  CAS  Google Scholar 

  34. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of our laboratory for helpful discussions. The authors are grateful to A. Berns, I. Verma, D. Trono, S. Lowe, J. Woodgett, P. Maxwell and J. Zavada for their generous gifts of reagents, to M. Hitz for assistance with mouse breeding and maintenance, and to the Light Microscopy Centre ETH Zurich, in particular G. Csucs and J. Kusch, for help with microscopy. This work was supported by grants from the Dr. Josef Steiner Foundation and Swiss National Foundation (W.K) and from the Serono Foundation for the Advancement of Medical Science (I.J.F).

Author information

Authors and Affiliations

Authors

Contributions

Project conception, planning, data analysis and manuscript preparation were performed by C.R.T., I.J.F. and W.K. C.R.T. and I.J.F. contributed equally to experimental work. C.R.H. contributed to Supplementary Information, Fig. S4c, d. M.M. and M.H. contributed VHL patient material.

Corresponding author

Correspondence to Wilhelm Krek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoma, C., Frew, I., Hoerner, C. et al. pVHL and GSK3β are components of a primary cilium-maintenance signalling network. Nat Cell Biol 9, 588–595 (2007). https://doi.org/10.1038/ncb1579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing