Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes

Abstract

Phosphatidylserine (PS) exposure is normally associated with apoptosis and the removal of dying cells. We observed that PS is exposed constitutively at high levels on T lymphocytes that express low levels of the transmembrane tyrosine phosphatase CD45RB. CD45 was shown to be a negative regulator of PS translocation in response to various signals, including activation of the ATP receptor P2X7. Changes in PS distribution were shown to modulate several membrane activities: Ca2+ and Na+ uptake through the P2X7 cation channel itself; P2X7-stimulated shedding of the homing receptor CD62L; and reversal of activity of the multidrug transporter P-glycoprotein. The data identify a role for PS distribution changes in signal transduction, rapidly modulating the activities of several membrane proteins. This seems to be an all-or-none effect, coordinating the activity of most or all the molecules of a target protein in each cell. The data also suggest a new approach to circumventing multidrug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PS translocation by T cells is inversely related to the level of CD45RB.
Figure 2: P2X7-dependent PS translocation in cells from mice expressing different levels of CD45.
Figure 3: PS exposure stimulates CD62L shedding and T-cell migration.
Figure 4: Ca2+ uptake and PS translocation in cells stimulated with the P2X7 agonist BzATP.
Figure 5: P2X7-stimulated Ca2+ uptake is independent of PS translocation in lymphocytes expressing the P2X7-P allele.
Figure 6: P2X7 stimulation inhibits P-glycoprotein activity.
Figure 7: PS translocation inhibits P-glycoprotein-dependent drug export.
Figure 8: Schematic showing the role for changes in membrane PS distribution as a signal transduction mechanism regulating cellular responses.

Similar content being viewed by others

References

  1. Sims, P. J. & Wiedmer, T. Unraveling the mysteries of phospholipid scrambling. Thromb. Haemost. 86, 266–275 (2001).

    Article  CAS  Google Scholar 

  2. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  3. Connor, J., Pak, C. C. & Schroit, A. J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J. Biol. Chem. 269, 2399–2404 (1994).

    CAS  PubMed  Google Scholar 

  4. Bevers, E. M., Comfurius, P., Dekkers, D. W. & Zwaal, R. F. Lipid translocation across the plasma membrane of mammalian cells. Biochim. Biophys. Acta 1439, 317–330 (1999).

    Article  CAS  Google Scholar 

  5. Balasubramanian, K. & Schroit, A. J. Aminophospholipid asymmetry: A matter of life and death. Annu. Rev. Physiol. 65, 701–734 (2003).

    Article  CAS  Google Scholar 

  6. Gadella, B. M. & Harrison, R. A. Capacitation induces cyclic adenosine 3',5'-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol. Reprod. 67, 340–350 (2002).

    Article  CAS  Google Scholar 

  7. van den Eijnde, S. M. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell. Sci. 114, 3631–3642 (2001).

    CAS  PubMed  Google Scholar 

  8. Marguet, D., Luciani, M. F., Moynault, A., Williamson, P. & Chimini, G. Engulfment of apoptotic cells involves the redistribution of membrane phosphatidylserine on phagocyte and prey. Nature Cell Biol. 1, 454–456 (1999).

    Article  CAS  Google Scholar 

  9. Frasch, S. C. et al. Phospholipid flip-flop and phospholipid scramblase (PLSCR 1) co-localize to uropod rafts in fMLP stimulated neutrophils. J. Biol. Chem. 279, 17625–17633 (2004).

    Article  CAS  Google Scholar 

  10. Sim, J. A., Young, M. T., Sung, H. Y., North, R. A. & Surprenant, A. Reanalysis of P2X7 receptor expression in rodent brain. J. Neurosci. 24, 6307–6314 (2004).

    Article  CAS  Google Scholar 

  11. Shi, J. & Gilbert, G. E. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101, 2628–2636 (2003).

    Article  CAS  Google Scholar 

  12. Schlegel, R. A., Callahan, M. K. & Williamson, P. The central role of phosphatidylserine in the phagocytosis of apoptotic thymocytes. Ann. NY Acad. Sci. 926, 217–225 (2000).

    Article  CAS  Google Scholar 

  13. Kurosaka, K., Takahashi, M., Watanabe, N. & Kobayashi, Y. Silent cleanup of very early apoptotic cells by macrophages. J. Immunol. 171, 4672–4679 (2003).

    Article  CAS  Google Scholar 

  14. Gatti, R. et al. Comparison of annexin V and calcein-AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J. Histochem. Cytochem. 46, 895–900 (1998).

    Article  CAS  Google Scholar 

  15. Marchetti, P. et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155–1160 (1996).

    Article  CAS  Google Scholar 

  16. Castedo, M. et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J. Immunol. 157, 512–521 (1996).

    CAS  PubMed  Google Scholar 

  17. Elliott, J. I. & Higgins, C. F. MHC class I shedding and programmed cell death stimulated through the proinflammatory P2X7 receptor: a candidate susceptibility gene for NOD diabetes. Diabetes 53, 2012–2017 (2004).

    Article  CAS  Google Scholar 

  18. Ogilvy, S. et al. Either of the CD45RB and CD45RO isoforms are effective in restoring T cell, but not B cell, development and function in CD45-null mice. J. Immunol. 171, 1792–1800 (2003).

    Article  CAS  Google Scholar 

  19. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    Article  CAS  Google Scholar 

  20. Byth, K. F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 183, 1707–1718 (1996).

    Article  CAS  Google Scholar 

  21. Labasi, J. M. et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol. 168, 6436–6445 (2002).

    Article  CAS  Google Scholar 

  22. Manodori, A. B., Barabino, G. A., Lubin, B. H. & Kuypers, F. A. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood 95, 1293–1300 (2000).

    CAS  PubMed  Google Scholar 

  23. Honig, S. M. et al. FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J. Clin. Invest. 111, 627–637 (2003).

    Article  CAS  Google Scholar 

  24. Galkina, E. et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J. Exp. Med. 198, 1323–1335 (2003).

    Article  CAS  Google Scholar 

  25. Kishimoto, T. K., Jutila, M. A., Berg, E. L. & Butcher, E. C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 245, 1238–1241 (1989).

    Article  CAS  Google Scholar 

  26. James, M. J. et al. Anergic T cells exert antigen-independent inhibition of cell-cell interactions via chemokine metabolism. Blood 102, 2173–2179 (2003).

    Article  CAS  Google Scholar 

  27. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  Google Scholar 

  28. Adriouch, S. et al. Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J. Immunol. 169, 4108–4112 (2002).

    Article  CAS  Google Scholar 

  29. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998).

    CAS  PubMed  Google Scholar 

  30. Wiley, J. S., Gargett, C. E., Zhang, W., Snook, M. B. & Jamieson, G. P. Partial agonists and antagonists reveal a second permeability state of human lymphocyte P2Z/P2X7 channel. Am. J. Physiol. 275, C1224–C1231 (1998).

    Article  CAS  Google Scholar 

  31. Higgins, C. F. & Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21 (1992).

    Article  CAS  Google Scholar 

  32. MacKenzie, A. et al. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 5, 825–835 (2001).

    Article  Google Scholar 

  33. Elliott, J. I., Raguz, S. & Higgins, C. F. Multidrug transporter activity in lymphocytes. Br. J. Pharmacol. 143, 890–898 (2004).

    Article  Google Scholar 

  34. Bucki, R., Janmey, P. A., Vegners, R., Giraud, F. & Sulpice, J. C. Involvement of phosphatidylinositol 4,5-bisphosphate in phosphatidylserine exposure in platelets: use of a permeant phosphoinositide-binding peptide. Biochemistry 40, 15752–15761 (2001).

    Article  CAS  Google Scholar 

  35. Kim, M., Jiang, L. H., Wilson, H. L., North, R. A. & Surprenant, A. Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J. 20, 6347–6358 (2001).

    Article  CAS  Google Scholar 

  36. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  Google Scholar 

  37. Faria, R. X., Defarias, F. P. & Alves, L. A. Are second messengers crucial for opening the pore associated with P2X7 receptor? Am. J. Physiol., Cell Physiol. 288, C260–C271 (2005).

    Article  CAS  Google Scholar 

  38. Marty, V., Medina, C., Combe, C., Parnet, P. & Amedee, T. ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49, 511–519 (2005).

    Article  Google Scholar 

  39. Kim, R. B. et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101, 289–294 (1998).

    Article  CAS  Google Scholar 

  40. Schinkel, A. H. The roles of P-glycoprotein and MRP1 in the blood-brain and blood-cerebrospinal fluid barriers. Adv. Exp. Med. Biol. 500, 365–372 (2001).

    Article  CAS  Google Scholar 

  41. Schinkel, A. H. et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl Acad. Sci. 94, 4028–4033 (1997).

    Article  CAS  Google Scholar 

  42. Marelli-Berg, F. M., Peek, E., Lidington, E. A., Stauss, H. J. & Lechler, R. I. Isolation of endothelial cells from murine tissue. J. Immunol. Methods 244, 205–215 (2000).

    Article  CAS  Google Scholar 

  43. Scott, D. M. et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 376, 695–698 (1995).

    Article  CAS  Google Scholar 

  44. Marelli-Berg, F. M. et al. Activated murine endothelial cells have reduced immunogenicity for CD8+ T cells: a mechanism of immunoregulation? J. Immunol. 165, 4182–4189 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Merkenschlager for valuable suggestions, S. Jarmin, D. Scott and G. Morgan for technical support, and G. Gilbert (VA Boston Healthcare System) for the gift of fluorescently labelled lactadherin. We are grateful to the Medical Research Council, the Jenner Institute and the Biotechnology and Biological Sciences Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Elliott.

Ethics declarations

Competing interests

The MRC have patented the concept of stimulating phosphatidylserine distribution as a means of overcoming multidrug resistance.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, J., Surprenant, A., Marelli-Berg, F. et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 7, 808–816 (2005). https://doi.org/10.1038/ncb1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1279

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing