Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”

Abstract

We describe a method for the rational design of more effective therapeutic proteins using amino acid substitutions that reduce receptor binding affinity in intracellular endosomal compartments, thereby leading to increased recycling in the ligand-sorting process and consequently resulting in longer half-life in extracellular medium. We demonstrate this approach for granulocyte colony-stimulating factor by using computationally predicted histidine substitutions that switch protonation states between cell-surface and endosomal pH. Molecular modeling of binding electrostatics indicates two different single-histidine mutants that fulfill our design requirements; experimental assays demonstrate that each mutant indeed exhibits an order-of-magnitude increase in medium half-life along with enhanced potency due to increased endocytic recycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational predictions and experimental validation of receptor-binding properties of wild-type GCSF and histidine mutants.
Figure 2: Depletion of wild-type GCSF and histidine mutants and corresponding cell proliferation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lauffenburger, D.A., Fallon, E.M. & Haugh, J.M. Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 5, R257–R263 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. French, A.R., Tadaki, D.K., Niyogi, S.K. & Lauffenburger, D.A. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J. Biol. Chem. 270, 4334–4340 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Cama, A. et al. Two mutant alleles of the insulin receptor gene in a family with a genetic form of insulin resistance: a 10 base-pair deletion in exon 1 and a mutation substituting serine for asparagine 462. Hum. Genet. 95, 174–182 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Ebner, R. & Derynck, R. Epidermal growth factor and transforming growth factor-α: differential intracellular routing and processing of ligand-receptor complexes. Cell Regul. 2, 599–612 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waterman, H., Sabanai, I., Geiger, B. & Yarden, Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J. Biol. Chem. 273, 13819–13827 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. French, A.R. & Lauffenburger, D.A. Controlling receptor/ligand trafficking: effects of cellular and molecular properties on endosomal sorting. Ann. Biomed. Eng. 25, 690–707 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, C.C., Niyogi, S.K., Wells, A., Wiley, H.S. & Lauffenburger, D.A. Engineering epidermal growth factor for enhanced mitogenic potency. Nat. Biotechnol. 14, 1696–1699 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Fallon, E.M., Liparoto, S.F., Lee, K.J., Ciardelli, T.L. & Lauffenburger, D.A. Increased endosomal sorting of ligand to recycling enhances potency of an interleukin-2 analog. J. Biol. Chem. 275, 6790–6797 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Horan, T. et al. Dimerization of the extracellular domain of granulocyte-colony stimulating factor receptor by ligand binding: a monovalent ligand induces 2:2 complexes. Biochemistry 35, 4886–4896 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Horan, T.P., Martin, F., Simonet, L., Arakawa, T. & Philo, J.S. Dimerization of granulocyte-colony stimulating factor receptor: the Ig plus CRH construct of granulocyte-colony stimulating factor receptor forms a 2:2 complex with a ligand. J. Biochem. (Tokyo) 121, 370–375 (1997).

    Article  CAS  Google Scholar 

  11. Fukunaga, R., Ishizaka-Ikeda, E., Pan, C.-X., Seto, Y. & Nagata, S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J. 10, 2855–2865 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aritomi, M. et al. Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature 401, 713–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Layton, J.E., Hockman, H., Sheridan, W.P. & Morstyn, G. Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74, 1303–1307 (1989).

    CAS  PubMed  Google Scholar 

  14. Morstyn, G., Dexter, T.M. & Foote, M. (eds). Filgrastim (r-metHuG-CSF) in Clinical Practice, Edn. 2 (Marcel Dekker, New York, 1998).

    Google Scholar 

  15. Tanokura, M. 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. Biochim. Biophys. Acta 742, 576–585 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, A.-S. & Honig, B. On the pH dependence of protein stability. J. Mol. Biol. 231, 459–474 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Layton, J.E. et al. Interaction of granulocyte colony-stimulating factor (G-CSF) with its receptor: evidence that Glu19 of G-CSF interacts with Arg288 of the receptor. J. Biol. Chem. 274, 17445–17451 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Reidhaar-Olson, J.F., De Souza-Hart, J.A. & Selick, H.E. Identification of residues critical to the activity of human granulocyte colony-stimulating factor. Biochemistry 35, 9034–9041 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Fallon, E.M. & Lauffenburger, D.A. Computational model for effects of ligand/receptor binding properties on interleukin-2 trafficking dynamics and T cell proliferation response. Biotechnol. Prog. 16, 905–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Layton, J.E., Hall, N.E., Connell, F., Venhorst, J. & Treutlein, H.R. Identification of ligand-binding site III on the immunoglobulin-like domain of the granulocyte colony-stimulating factor receptor. J. Biol. Chem. 276, 36779–36787 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Layton, J.E., Iaria, J., Smith, D.K. & Treutlein, H.R. Identification of a ligand-binding site on the granulocyte colony-stimulating factor receptor by molecular modeling and mutagenesis. J. Biol. Chem. 272, 29735–29741 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Sarkar, C.A. Cytokine engineering through ligand/receptor dynamics: a study on granulocyte colony-stimulating factor. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (2002).

  24. Brünger, A.T. & Karplus, M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins 4, 148–156 (1988).

    Article  PubMed  Google Scholar 

  25. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  26. Kangas, E. & Tidor, B. Optimizing electrostatic affinity in ligand-receptor binding: theory, computation, and ligand properties. J. Chem. Phys. 109, 7522–7545 (1998).

    Article  CAS  Google Scholar 

  27. Dunbrack, R.L. & Karplus, M. Backbone-dependent rotamer library for proteins: application to side-chain prediction. J. Mol. Biol. 230, 543–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Sitkoff, D., Sharp, K.A. & Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988 (1994).

    Article  CAS  Google Scholar 

  29. Leach, A.R. & Lemon, A.P. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 33, 227–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Desmet, J., De Maeyer, M., Hazes, B. & Lasters, I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein, R.F. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys. J. 66, 1335–1340 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hendsch, Z.S. & Tidor, B. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci. 8, 1381–1392 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gilson, M.K., Sharp, K.A. & Honig, B.H. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335 (1988).

    Article  CAS  Google Scholar 

  34. Sharp, K.A. & Honig, B. Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19, 301–332 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Gilson, M.K. & Honig, B.H. Calculation of electrostatic potentials in an enzyme active site. Nature 330, 84–86 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Aiyar, A., Xiang, Y. & Leis, J. Site-directed mutagenesis using overlap extension PCR. Methods Mol. Biol. 57, 177–191 (1996).

    CAS  PubMed  Google Scholar 

  37. Lu, H.S. et al. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. J. Biol. Chem. 267, 8770–8777 (1992).

    CAS  PubMed  Google Scholar 

  38. Kelleher, C.A. et al. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia. Leukemia 2, 211–215 (1988).

    CAS  PubMed  Google Scholar 

  39. Kuwabara, T., Kobayashi, S. & Sugiyama, Y. Kinetic analysis of receptor-mediated endocytosis of G-CSF derivative, nartograstim, in rat bone marrow cells. Am. J. Physiol. Endocrinol. Metab. 34, E73–E84 (1996).

    Article  Google Scholar 

  40. Khwaja, A., Carver, J., Jones, H.M., Paterson, D. & Linch, D.C. Expression and dynamic modulation of the human granulocyte colony-stimulating factor receptor in immature and differentiated myeloid cells. Br. J. Haematol. 85, 254–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. French, A.R., Sudlow, G.P., Wiley, H.S. & Lauffenburger, D.A. Postendocytic trafficking of epidermal growth factor receptor complexes is mediated through saturable and specific endosomal interactions. J. Biol. Chem. 269, 15749–15755 (1994).

    CAS  PubMed  Google Scholar 

  42. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Brems and H. Lodish for vital input and encouragement; J. Caravella, E. Fallon, F. Frankel, E. Kangas, K.D. Wittrup, and D. Wu for fruitful discussions; and E. McCulloch for the OCI/AML1 cell line. This work was supported by a Hertz Foundation fellowship to C.A.S., National Institutes of Health grant GM56552 to B.T., and a grant from the Amgen/MIT Partnership to D.A.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce Tidor or Douglas A. Lauffenburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, C., Lowenhaupt, K., Horan, T. et al. Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat Biotechnol 20, 908–913 (2002). https://doi.org/10.1038/nbt725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing