Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arming antibodies: prospects and challenges for immunoconjugates

Abstract

Immunoconjugates—monoclonal antibodies (mAbs) coupled to highly toxic agents, including radioisotopes and toxic drugs (ineffective when administered systemically alone)—are becoming a significant component of anticancer treatments. By combining the exquisite targeting specificity of mAbs with the enhanced tumor-killing power of toxic effector molecules, immunoconjugates permit sensitive discrimination between target and normal tissue, resulting in fewer toxic side effects than most conventional chemotherapeutic drugs. Two radioimmunoconjugates, ibritumomab tiuxetan (Zevalin) and tositumomab-131I (Bexxar), and one drug conjugate, gemtuzumab ozogamicin (Mylotarg), are now on the market. For the next generation of immunoconjugates, advances in protein engineering will permit greater control of mAb targeting, clearance and pharmacokinetics, resulting in significantly improved delivery to tumors of radioisotopes and potent anticancer drugs. Pretargeting strategies, which separate the two functions of antibody-based localization and delivery or generation of the toxic agent into two steps, also promise to afford superior tumor targeting and therapeutic efficacy. Several challenges in optimizing immunoconjugates remain, however, including poor intratumoral mAb uptake, normal tissue conjugate exposure and issues surrounding drug potency and conditional release from mAb carriers. Nonetheless, highly promising results from preclinical models will continue to drive the clinical development of this therapeutic class.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between engineered antibody format, targeting and imaging, and blood clearance.

Katie Ris

Figure 2: Chemical structures of some advanced mAb-drug conjugates.

Katie Ris

Figure 3: Pretargeting technologies for mAb-mediated delivery of cytotoxic agents to tumor cells.

Katie Ris

Similar content being viewed by others

References

  1. Hoogenboom, H.R. & Chames, P. Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Feldhaus, M.J. & Siegel, R.W. Yeast display of antibody fragments: a discovery and characterization platform. J. Immunol. Methods 290, 69–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Lipovsek, D. & Pluckthun, A. In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290, 51–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Irving, R.A., Coia, G., Roberts, A., Nuttall, S.D. & Hudson, P.J. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J. Immunol. Methods 248, 31–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Lonberg, N. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856–859 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Green, L.L. et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat. Genet. 7, 13–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Jain, R.K. Tumor physiology and antibody delivery. Front. Radiat. Ther. Oncol. 24, 32–46; discussion 64–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Saga, T. et al. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc. Natl. Acad. Sci. USA 92, 8999–9003 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruiz-Cabello, F., Cabrera, T., Lopez-Nevot, M.A. & Garrido, F. Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Semin. Cancer Biol. 12, 15–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wahl, R.L. Tositumomab and (131)I therapy in non-Hodgkin's lymphoma. J. Nucl. Med. 46 (Suppl. 1), 128S–140S (2005).

    CAS  PubMed  Google Scholar 

  11. Borghaei, H. & Schilder, R.J. Safety and efficacy of radioimmunotherapy with yttrium 90 ibritumomab tiuxetan (Zevalin). Semin. Nucl. Med. 34, 4–9 (2004).

    Article  PubMed  Google Scholar 

  12. Linenberger, M.L. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19, 176–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Milenic, D.E., Brady, E.D. & Brechbiel, M.W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, A.M. & Yazaki, P.J. Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44, 268–283 (2000).

    CAS  PubMed  Google Scholar 

  15. Hulahov, A. & Chester, K.A. Engineered single chain antibody fragments for radioimmunotherapy. Q. J. Nucl. Med. Mol. Imaging 48, 279–288 (2004).

    Google Scholar 

  16. Adams, G.P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  17. Yazaki, P.J. et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and T84.66 minibody: comparison to radioiodinated fragments. Bioconjug. Chem. 12, 220–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Borsi, L. et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Slavin-Chiorini, D.C. et al. Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. (Suppl.) 55, 5957s–5967s (1995).

    CAS  PubMed  Google Scholar 

  20. Kenanova, V. et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 65, 622–631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Albrecht, H. et al. Production of soluble ScFvs with C-terminal-free thiol for site-specific conjugation or stable dimeric ScFvs on demand. Bioconjug. Chem. 15, 16–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Natarajan, A., Xiong, C.Y., Albrecht, H., DeNardo, G.L. & DeNardo, S.J. Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals. Bioconjug. Chem. 16, 113–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Li, L. et al. Reduction of kidney uptake in radiometal labeled peptide linkers conjugated to recombinant antibody fragments. Site-specific conjugation of DOTA-peptides to a Cys-diabody. Bioconjug. Chem. 13, 985–995 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Olafsen, T. et al. Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng. Des. Sel. 17, 21–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Waibel, R. et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat. Biotechnol. 17, 897–901 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Corneillie, T.M., Whetstone, P.A., Lee, K.C., Wong, J.P. & Meares, C.F. Converting weak binders into infinite binders. Bioconjug. Chem. 15, 1389–1391 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Sundaresan, G. et al. (124)I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J. Nucl. Med. 44, 1962–1969 (2003).

    CAS  PubMed  Google Scholar 

  28. Robinson, M.K. et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 65, 1471–1478 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Olafsen, T. et al. Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng. Des. Sel. 17, 315–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Olafsen, T. et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res. 65, 5907–5916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith-Jones, P.M. et al. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. 22, 701–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Begent, R.H.J. et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. 2, 979–984 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Larson, S.M. et al. Single chain antigen binding protein (sFv CC49)—First human studies in colorectal carcinoma metastatic to liver. Cancer 80 (Suppl.), 2458–2468 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Santimaria, M. et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9, 571–579 (2003).

    CAS  PubMed  Google Scholar 

  35. Wong, J.Y. et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin. Cancer Res. 10, 5014–5021 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Adams, G. et al. Delivery of the α-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl. Med. Biol. 27, 339–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Adams, G.P. et al. A single treatment of yttrium-90-labeled CHX-A''-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res. 64, 6200–6206 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sharkey, R.M. & Goldenberg, D.M. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J. Nucl. Med. 46 (Suppl. 1), 115S–127S (2005).

    CAS  PubMed  Google Scholar 

  39. Jhanwar, Y.S. & Divgi, C. Current status of therapy of solid tumors. J. Nucl. Med. 46 (Suppl. 1), 141S–150S (2005).

    PubMed  Google Scholar 

  40. Wong, J.Y. et al. A phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin. Cancer Res. 9, 5842–5852 (2003).

    CAS  PubMed  Google Scholar 

  41. Sharkey, R.M. et al. A phase I trial combining high-dose 90Y-labeled humanized anti-CEA monoclonal antibody with doxorubicin and peripheral blood stem cell rescue in advanced medullary thyroid cancer. J. Nucl. Med. 46, 620–633 (2005).

    CAS  PubMed  Google Scholar 

  42. Dubowchik, G.M. & Walker, M.A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol. Ther. 83, 67–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Payne, G. Progress in immunoconjugate cancer therapeutics. Cancer Cell 3, 207–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Trail, P.A. et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Mosure, K.W., Henderson, A.J., Klunk, L.J. & Knipe, J.O. Disposition of conjugate-bound and free doxorubicin in tumor-bearing mice following administration of a BR96-doxorubicin immunoconjugate (BMS 182248). Cancer Chemother. Pharmacol. 40, 251–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Saleh, M.N. et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18, 2282–2292 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Tolcher, A.W. et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21, 211–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths, G.L. et al. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin. Cancer Res. 9, 6567–6571 (2003).

    CAS  PubMed  Google Scholar 

  49. Damle, N.K. & Frost, P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharmacol. 3, 386–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Damle, N.K. Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin. Biol. Ther. 4, 1445–1452 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Hamann, P.R. et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 13, 40–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hamann, P.R. et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bross, P.F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  54. Sievers, E.L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678–3684 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Sievers, E.L. & Linenberger, M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr. Opin. Oncol. 13, 522–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Giles, F.J. et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. DiJoseph, J.F. et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103, 1807–1814 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. DiJoseph, J.F. et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol. Immunother. 54, 11–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Boghaert, E.R. et al. Antibody-targeted chemotherapy with the calicheamicin conjugate hu3S193-N-acetyl gamma calicheamicin dimethyl hydrazide targets Lewis(y) and eliminates Lewis(y-positive) human carcinoma cells and xenografts. Clin. Cancer Res. 10, 4538–4549 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Linenberger, M.L. et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98, 988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hamann, P.R. et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug. Chem. 16, 346–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Vitetta, E.S., Thorpe, P.E. & Uhr, J.W. Immunotoxins: magic bullets or misguided missiles? Immunol. Today 14, 252–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Thorpe, P.E. et al. Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res. 48, 6396–6403 (1988).

    CAS  PubMed  Google Scholar 

  64. Smith, S.V. Technology evaluation: cantuzumab mertansine, ImmunoGen. Curr. Opin. Mol. Ther. 6, 666–674 (2004).

    CAS  PubMed  Google Scholar 

  65. Xie, H., Audette, C., Hoffee, M., Lambert, J.M. & Blattler, W.A. Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242–DM1), and its two components in mice. J. Pharmacol. Exp. Ther. 308, 1073–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Lutz, R.L. et al. HuC242–DM4, an antibody-maytansinoid conjugate with superior preclinical activity in human CanAg-positive tumor xenograft models in SCID mice. Abstract of a paper presented at the 96th annual meeting of the American Association for Cancer Research, Anaheim, CA, 16–20 April 2005.

  67. Fosella, F.V. et al. Phase II trial of BB-10901 (huN901–DM1) given weekly for four consecutive weeks every 6 weeks in patients with relapsed SCLC and CD56-positive small cell carcinoma. Abstract of a paper presented at the 41st annual meeting of the American Society of Clinical Oncology, Orlando, FL, 13–17 May 2005.

  68. Tassone, P. et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4–DM1 against CD138+ multiple myeloma cells. Blood 104, 3688–3696 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Henry, M.D. et al. A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res. 64, 7995–8001 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Dubowchik, G.M. & Firestone, R.A. Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg. Med. Chem. Lett. 8, 3341–3346 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Dubowchik, G.M., Mosure, K., Knipe, J.O. & Firestone, R.A. Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg. Med. Chem. Lett. 8, 3347–3352 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Dubowchik, G.M. et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 13, 855–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Walker, M.A., Dubowchik, G.M., Hofstead, S.J., Trail, P.A. & Firestone, R.A. Synthesis of an immunoconjugate of camptothecin. Bioorg. Med. Chem. Lett. 12, 217–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Walker, M.A. et al. Monoclonal antibody mediated intracellular targeting of tallysomycin S(10b). Bioorg. Med. Chem. Lett. 14, 4323–4327 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Doronina, S.O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Francisco, J.A. et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102, 1458–1465 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Saad, E.D. et al. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am. J. Clin. Oncol. 25, 451–453 (2002).

    Article  PubMed  Google Scholar 

  78. Hamblett, K.J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Law, C.L. et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin. Cancer Res. 10, 7842–7851 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Beeson, C. et al. Conditionally cleavable radioimmunoconjugates: a novel approach for the release of radioisotopes from radioimmunoconjugates. Bioconjug. Chem. 14, 927–933 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Arano, Y. Strategies to reduce renal radioactivity levels of antibody fragments. Q. J. Nucl. Med. 42, 262–270 (1998).

    CAS  PubMed  Google Scholar 

  82. Studer, M., Kroger, L.A., DeNardo, S.J., Kukis, D.L. & Meares, C.F. Influence of a peptide linker on biodistribution and metabolism of antibody-conjugated benzyl-EDTA. Comparison of enzymatic digestion in vitro and in vivo. Bioconjug. Chem. 3, 424–429 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Z. et al. Biotinylation, pharmacokinetics, and extracorporeal adsorption of humanized MAb 111In-MN14 using an avidin-affinity column in rats. Cancer Biother. Radiopharm. 18, 365–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Goodwin, D.A., Meares, C.F., McCall, M.J., McTigue, M. & Chaovapong, W. Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J. Nucl. Med. 29, 226–234 (1988).

    CAS  PubMed  Google Scholar 

  85. Sharkey, R.M. et al. Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin. Cancer Res. (in the press) (2005).

  86. Weiden, P.L. et al. Pretargeted radioimmunotherapy (PRITTM) for treatment of non-Hodgkin's lymphoma (NHL): initial phase I/II study results. Canc. Biother. Radiopharm. 15, 15–29 (2000).

    CAS  Google Scholar 

  87. Le Doussal, J.M., Martin, M., Gautherot, E., Delaage, M. & Barbet, J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J. Nucl. Med. 30, 1358–1366 (1989).

    CAS  PubMed  Google Scholar 

  88. Wang, Y. et al. Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjug. Chem. 12, 807–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. He, J. et al. Amplification targeting: a modified pretargeting approach with potential for signal amplification—proof of a concept. J. Nucl. Med. 45, 1087–1095 (2004).

    CAS  PubMed  Google Scholar 

  90. Dübel, S. et al. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods 178, 201–209 (1995).

    Article  PubMed  Google Scholar 

  91. Schultz, J. et al. A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res. 60, 6663–6669 (2000).

    CAS  PubMed  Google Scholar 

  92. Goshorn, S. et al. Preclinical evaluation of a humanized NR-LU-10 antibody-streptavidin fusion protein for pretargeted cancer therapy. Cancer Biother. Radiopharm. 16, 109–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Forero, A. et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 104, 227–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Rossi, E.A. et al. Pretargeting of CEA-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells. Clin. Cancer Res. (in the press) (2005).

  95. Senter, P.D. & Springer, C.J. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv. Drug Deliv. Rev. 53, 247–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Sharma, S.K., Bagshawe, K.D. & Begent, R.H. Advances in antibody-directed enzyme prodrug therapy. Curr. Opin. Investig. Drugs 6, 611–615 (2005).

    CAS  PubMed  Google Scholar 

  97. Siemers, N.O. et al. Construction, expression, and activities of L49-sFv-beta-lactamase, a single-chain antibody fusion protein for anticancer prodrug activation. Bioconjug. Chem. 8, 510–519 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Cortez-Retamozo, V. et al. Efficient cancer therapy with a nanobody-based conjugate. Canc. Res. 64, 2853–2857 (2004)

    Article  CAS  Google Scholar 

  99. Bhatia, J. et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein. Int. J. Cancer 85, 571–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Francis, R.J. et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br. J. Cancer 87, 600–607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mayer, A. et al. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br. J. Cancer 90, 2402–2410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Torgov, M.Y., Alley, S.C., Cerveny, C.G., Farquhar, D. & Senter, P.D. Generation of an intensely potent anthracycline by a monoclonal antibody-beta-galactosidase conjugate. Bioconjug. Chem. 16, 717–721 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their many colleagues and collaborators who have contributed over the years to the fields of antibody engineering and immunoconjugates. Apologies are extended to any authors whose work has not been included as a result of lack of space. Work in Anna Wu's laboratory was supported by NIH CA43904, CA86306, CA92131, DAMD 17-00-1-150 and DAMD 17-00-1-203. Work in Peter Senter's laboratory was partially supported by NIH CA088583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, A., Senter, P. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23, 1137–1146 (2005). https://doi.org/10.1038/nbt1141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing