Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Biopharmaceutical benchmarks 2010

Over the past four years, several new types of experimental biologic treatment have received commercial registration, but the emergence of biosimilars represents the biggest shift in the biologic approval landscape.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Biopharmaceutical approval numbers, by region, from 2006 to 2009.
Figure 3: Structure of Removab, the first bispecific antibody to achieve approval.
Figure 4

References

  1. Walsh, G. Biopharmaceutical benchmarks. Nat. Biotechnol. 24, 769–776 (2006).

    Article  CAS  Google Scholar 

  2. Rader, R. Paucity of biopharma approvals raises alarm. GEN 28, 3–15 (2008).

    Google Scholar 

  3. Evers, P. The Future of the Biological Market (Business Insights, March 2010).

    Google Scholar 

  4. R&D Pipeline News. Special edition, March 2010. La Merie Business Intelligence, available at http://www.pipelinereview.com

  5. Scheinecker, C. et al. Tocilizumab. Nat. Rev. Drug Discov. 8, 273–274 (2009).

    Article  CAS  Google Scholar 

  6. Melmed, G. et al. Certolizumab pegol. Nat. Rev. Drug Discov. 7, 641–642 (2008).

    Article  CAS  Google Scholar 

  7. Keam, S. Harper, D.M. Human papillomavirus types 16 and 18 vaccine (recombinant, AS04 adjuvanted, adsorbed). BioDrugs 22, 205–208 (2008).

    Article  Google Scholar 

  8. Crum, C., Jones, C., Kirkpatrick, P. Quadrivalent human papillomavirus recombinant vaccine. Nat. Rev. Drug Discov. 5, 629–630 (2006).

    Article  CAS  Google Scholar 

  9. Schneider, C.K. & Kalinke, U. Towards biosimilar monoclonal antibodies. Nat. Biotechnol. 26, 985–990 (2008).

    Article  CAS  Google Scholar 

  10. Carlson, B. Biosimilar market fails to meet projections. GEN 29, 43–45 (2009).

    Google Scholar 

  11. Mackler, B.F. Biosimilars and follow on branded biologics. GEN 29, 89–92 (2009).

    Google Scholar 

  12. The top 10 biosimilars players; positioning performance and SWOT analysis (Business Insights, April 2009) Available at http://www.globalbusinessinsights.com

  13. Westphal, N.J. & Malecki, M.J. Biosimilars 2007–2017: Shifting Payer and Physician Opinion Increases the Hurdles to Uptake (Decision Resources, October, 2008).

    Google Scholar 

  14. Drunker, D.J. et al. Liraglutide. Nat. Rev. Drug Discov. 9, 267–268 (2010).

    Article  Google Scholar 

  15. Walsh, G. & Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252 (2006).

    Article  CAS  Google Scholar 

  16. Ceaglio, N. et al. Novel long-lasting interferon alpha derivatives designed by glycoengineering. Biochimie 90, 437–449 (2008).

    Article  CAS  Google Scholar 

  17. Trousdale, R.K. et al. Efficacy of native and hyperglycosylated follicle-stimulating hormone analogs for promoting fertility in female mice. Fertil. Steril. 91, 265–270 (2009).

    Article  CAS  Google Scholar 

  18. Zhu, Y. et al. Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6 phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem. J. 389, 619–628 (2005).

    Article  CAS  Google Scholar 

  19. Zhu, Y. et al. Glycoengineered acid α-glucosidase with improved efficacy at correcting the metabolic aberrations & motor function deficits in a mouse model of Pompe disease. Mol. Ther. 17, 954–963 (2009).

    Article  CAS  Google Scholar 

  20. Natsume, A. Niwa, R., Satoh, M. Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des. Devel. Ther. 3, 7–16 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamilton, S.R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006).

    Article  CAS  Google Scholar 

  22. DePalma, A. Single use systems make headway with sceptics. GEN 29, 27–31 (2009).

    Google Scholar 

  23. Browne, S.M. & Al-Rubeai, M. Selection methods for high producing mammalian cell lines. Trends Biotechnol. 25, 425–432 (2007).

    Article  CAS  Google Scholar 

  24. Durocher, Y. & Butler, M. Expression systems for therapeutic glycoprotein production. Curr. Opin. Biotechnol. 20, 700–707 (2009).

    Article  CAS  Google Scholar 

  25. Liu, C. & Downey, W. Contract manufacturing demands remain strong. GEN 29, 53–59 (2009).

    Google Scholar 

  26. DePalma, A. Removing impediments in downstream processing. GEN 29, 135–139 (2009).

    Google Scholar 

  27. Davis, M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1071 (2010).

    Article  CAS  Google Scholar 

  28. Hiller, A. Fast growth foreseen for protein therapeutics. GEN 29, 153–155 (2009).

    Google Scholar 

  29. Goodman, M. Sales of biologics to show robust growth through to 2013. Nat. Rev. Drug Discov. 8, 837 (2009).

    Article  CAS  Google Scholar 

  30. Sheridan, C. Fresh from the biologic pipeline—2009. Nat. Biotechnol. 28, 307–310 (2010).

    Article  CAS  Google Scholar 

  31. Chinese Market for Biopharmaceuticals, Asia Market Information and Development Company, March 2009. Available via http://www.reportlinker.com

  32. Chakraborty, C. & Agoramoorthy, G. A special report on India's biotech scenario: advancement in biopharmaceutical and healthcare sectors. Biotechnol. Adv. 28, 1–6 (2010).

    Article  Google Scholar 

  33. Netterwald, J. Stem cell technologies regenerative medicine. 29, 39–42 (2009).

  34. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, G. Biopharmaceutical benchmarks 2010. Nat Biotechnol 28, 917–924 (2010). https://doi.org/10.1038/nbt0910-917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0910-917

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research