Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

αv Integrins as receptors for tumor targeting by circulating ligands

Abstract

Phage displaying an Arg-Gly-Asp (RGD)-containing peptide with a high affinity for αv integrins homed to tumors when injected intravenously into tumor-bearing mice. A substantially higher amount of αv-directed RGD phage than control phage was recovered from malignant melanomas and breast carcinoma. Antibodies detected the αv-directed RGD phage in tumor blood vessels, but not in several normal tissues. These results show that the αv integrins present in tumor blood vessels can bind circulating ligands and that RGD peptides selective for these integrins may be suitable tools in tumor targeting for diagnostic and therapeutic purposes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammer, D.A. 1990. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9: 175–189.

    Article  CAS  Google Scholar 

  2. Zetter, B.R. 1990. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322: 605–612.

    Article  CAS  Google Scholar 

  3. Springer, T.A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.

    Article  CAS  Google Scholar 

  4. Butcher, E.C. and Picker, L.J. 1996. Lymphocyte homing and homeostasis. Science 272: 60–66.

    Article  CAS  Google Scholar 

  5. Goetz, D.J., El-Sabban, M.E., Hammer, D.A., and Pauli, B.U. 1996. Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow. Int. J. Cancer 65: 192–199.

    Article  CAS  Google Scholar 

  6. Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.

    Article  CAS  Google Scholar 

  7. Baillie, C.T., Winslet, M.C., and Bradley, N.J. 1995. Tumour vasculature—a potential therapeutic target. Br. J. Cancer 72: 257–267.

    Article  CAS  Google Scholar 

  8. Burrows, F.J. and Thorpe, P.E. 1994. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64: 155–174.

    Article  CAS  Google Scholar 

  9. Buckle, R. 1994. Vascular targeting and the inhibition of angiogenesis. Ann. Oncol. 4(suppl.): 45–50.

    Google Scholar 

  10. Mustonen, T. and Alitalo, K. 1995. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129: 895–898.

    Article  CAS  Google Scholar 

  11. Lappi, D.A. 1995. Tumor targeting through fibroblast growth factor receptors. Semin. Cancer Biol. 6: 279–288.

    Article  CAS  Google Scholar 

  12. Martiny-Baron, G. and Marme, D. 1995. VEGF-mediated tumor angiogenesis: a new target for cancer therapy. Curr. Opin. Biotechnol. 6: 675–680.

    Article  CAS  Google Scholar 

  13. Rettig, W.J., Garin-Chesa, P., Healey, J.H., Su, S.L., Jaffe, E.A., and Old, L.J. 1992. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc. Natl. Acad. Sci. USA 89: 10832–10836.

    Article  CAS  Google Scholar 

  14. Brooks, P.C., Clark R.A., and Cheresh, D.A. 1994. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571.

    Article  CAS  Google Scholar 

  15. Friedlander, M., Brooks, P.C., Sharffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270: 1500–1502.

    Article  CAS  Google Scholar 

  16. Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., et al. 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.

    Article  CAS  Google Scholar 

  17. Brooks, P.C., Stromblad S., Klemle R., Visscher D., Sarkar F.H., and Cheresh, D.A. 1995. Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96: 1815–1822.

    Article  CAS  Google Scholar 

  18. Hammes, H.-P., Brownlee, M., Joonczyk, A., Sutter, A., and Preissner, K.T. 1996. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature. Med. 5: 529–533.

    Article  Google Scholar 

  19. Conforti, G., Dominguew-Jimenez, C., Zanetti, A., Gimbrone, M.A., Cremona, O., Marchisio, P.C., et al. 1992. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 80: 437–446.

    CAS  PubMed  Google Scholar 

  20. Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 21: 228–257.

    Article  Google Scholar 

  21. Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12: 697–715.

    Article  CAS  Google Scholar 

  22. Koivunen, E., Wang, B., and Ruoslahti, E. 1995. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/Technology 13: 265–270.

    CAS  PubMed  Google Scholar 

  23. Geter, M.R., Trigg, M.E., and Merril, C.R. 1973. Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246: 221–223.

    Article  Google Scholar 

  24. Shockley, T.R., Lin, K., Nagy, J.A., Tompkins, R.G., Dvorak, H.F., and Yarmush, M.L 1991. Penetration of tumor tissue by antibodies and other immunoproteins. Ann. N.Y. Acad. Sci. 618: 367–382.

    Article  CAS  Google Scholar 

  25. Dvorak, H.F., Nagy, J.A., and Dvorak, A.M. 1991. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85.

    CAS  PubMed  Google Scholar 

  26. Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27–31.

    Article  CAS  Google Scholar 

  27. Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  CAS  Google Scholar 

  28. Rak, J.W., St. Croix, B.D., and Kerbel, R.S. 1995. Consequences of angiogenesis for tumor progression, metastasis and cancer. Anticancer Drugs 6: 3–18.

    Article  CAS  Google Scholar 

  29. Price, J.E., Polyzos, A., Zhang, R.D., and Daniels, L.M. 1990. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50: 717–721.

    CAS  Google Scholar 

  30. Nicolson, G.L., Inoue, T., Van Pelt, C.S., and Cavanaugh, P.G. 1990. Differential expression of a Mr. approximately 90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 50: 515–520.

    CAS  PubMed  Google Scholar 

  31. Welch, D.R., Bisi, J.E., Miller, B.E., Conaway, D., Seftor, E.A., Yohem, K.H., et al. 1991. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47: 227–237.

    Article  CAS  Google Scholar 

  32. Montesano, R., Pepper, M.S., Möhle-Steinlein, U., Risau, W., Wagner, E.F., and Orci, L. 1990. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualini, R., Koivunen, E. & Ruoslahti, E. αv Integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15, 542–546 (1997). https://doi.org/10.1038/nbt0697-542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0697-542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing