Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase

Abstract

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control1. With prevalent hyperactivation of the mammalian TOR (mTOR) pathway in human cancers2, strategies to enhance TOR pathway inhibition are needed. We used a yeast-based screen to identify small-molecule enhancers of rapamycin (SMERs) and discovered an inhibitor (SMER3) of the Skp1-Cullin-F-box (SCF)Met30 ubiquitin ligase, a member of the SCF E3-ligase family, which regulates diverse cellular processes including transcription, cell-cycle control and immune response3. We show here that SMER3 inhibits SCFMet30 in vivo and in vitro, but not the closely related SCFCdc4. Furthermore, we demonstrate that SMER3 diminishes binding of the F-box subunit Met30 to the SCF core complex in vivo and show evidence for SMER3 directly binding to Met30. Our results show that there is no fundamental barrier to obtaining specific inhibitors to modulate function of individual SCF complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two unsupervised data analyses classify five SMERs into three different groups based on their gene expression profiles.
Figure 2: SMER3 targets SCFMet30.
Figure 3: Molecular mechanism for the specificity of SCFMet30 inhibition by SMER3.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  2. Bjornsti, M.A. & Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335–348 (2004).

    Article  CAS  Google Scholar 

  3. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Natl. Rev. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  4. Easton, J.B. & Houghton, P.J. mTOR and cancer therapy. Oncogene 25, 6436–6446 (2006).

    Article  CAS  Google Scholar 

  5. Cloughesy, T.F. et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8 (2008).

    Article  Google Scholar 

  6. Chiang, G.G. & Abraham, R.T. Targeting the mTOR signaling network in cancer. Trends Mol. Med. 13, 433–442 (2007).

    Article  CAS  Google Scholar 

  7. Shaw, R.J. & Cantley, L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  Google Scholar 

  8. Guertin, D.A. & Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  Google Scholar 

  9. Huang, J. et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc. Natl. Acad. Sci. USA 101, 16594–16599 (2004).

    Article  CAS  Google Scholar 

  10. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3, 331–338 (2007).

    Article  CAS  Google Scholar 

  11. Lomenick, B. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA (in the press) (2009).

  12. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  13. Kaiser, P., Su, N.Y., Yen, J.L., Ouni, I. & Flick, K. The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division. Cell Div. 1, 16 (2006).

    Article  Google Scholar 

  14. Patton, E.E. et al. SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J. 19, 1613–1624 (2000).

    Article  CAS  Google Scholar 

  15. Sawyers, C.L. Imatinib GIST keeps finding new indications: successful treatment of dermatofibrosarcoma protuberans by targeted inhibition of the platelet-derived growth factor receptor. J. Clin. Oncol. 20, 3568–3569 (2002).

    Article  Google Scholar 

  16. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    Article  CAS  Google Scholar 

  17. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  Google Scholar 

  18. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  19. Chen, Q. et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111, 4690–4699 (2008).

    Article  CAS  Google Scholar 

  20. Nakajima, H., Fujiwara, H., Furuichi, Y., Tanaka, K. & Shimbara, N. A novel small-molecule inhibitor of NF-kappaB signaling. Biochem. Biophys. Res. Commun. 368, 1007–1013 (2008).

    Article  CAS  Google Scholar 

  21. Soucy, T.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  Google Scholar 

  22. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  Google Scholar 

  23. Nalepa, G., Rolfe, M. & Harper, J.W. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596–613 (2006).

    Article  CAS  Google Scholar 

  24. Zinzalla, V., Graziola, M., Mastriani, A., Vanoni, M. & Alberghina, L. Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae. Mol. Microbiol. 63, 1482–1494 (2007).

    Article  CAS  Google Scholar 

  25. Halpern, B.C., Clark, B.R., Hardy, D.N., Halpern, R.M. & Smith, R.A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc. Natl. Acad. Sci. USA 71, 1133–1136 (1974).

    Article  CAS  Google Scholar 

  26. Guo, H. et al. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res. 53, 5676–5679 (1993).

    CAS  PubMed  Google Scholar 

  27. Lee, C.H., Inoki, K. & Guan, K.L. mTOR pathway as a target in tissue hypertrophy. Annu. Rev. Pharmacol. Toxicol. 47, 443–467 (2007).

    Article  CAS  Google Scholar 

  28. Harrison, D.E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  Google Scholar 

  29. Flick, K. et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat. Cell Biol. 6, 634–641 (2004).

    Article  CAS  Google Scholar 

  30. Duncan, M.C., Ho, D.G., Huang, J., Jung, M.E. & Payne, G.S. Composite synthetic lethal identification of membrane traffic inhibitors. Proc. Natl. Acad. Sci. USA 104, 6235–6240 (2007).

    Article  CAS  Google Scholar 

  31. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  32. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  33. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  34. Chandrasekaran, S. et al. Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4. Mol. Cell 24, 689–699 (2006).

    Article  CAS  Google Scholar 

  35. Feldman, R.M., Correll, C.C., Kaplan, K.B. & Deshaies, R.J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  36. Petroski, M.D. & Deshaies, R.J. In vitro reconstitution of SCF substrate ubiquitination with purified proteins. Methods Enzymol. 398, 143–158 (2005).

    Article  CAS  Google Scholar 

  37. Booher, K.R. & Kaiser, P. A PCR-based strategy to generate yeast strains expressing endogenous levels of amino-terminal epitope-tagged proteins. Biotechnol. J. 3, 524–529 (2008).

    Article  CAS  Google Scholar 

  38. Guerrero, C., Tagwerker, C., Kaiser, P. & Huang, L. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol. Cell. Proteomics 5, 366–378 (2006).

    Article  CAS  Google Scholar 

  39. Tagwerker, C. et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol. Cell. Proteomics 5, 737–748 (2006).

    Article  CAS  Google Scholar 

  40. Meierhofer, D., Wang, X., Huang, L. & Kaiser, P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 7, 4566–4576 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for grant support from the American Cancer Society and the U.S. National Institutes of Health and for traineeship support of M.A. and B.L. by the NIH UCLA Chemistry−Biology Interface Predoctoral Training Program. N.Z. and R.J.D. are investigators of the Howard Hughes Medical Institute. We thank D. Skowyra (Saint Louis University) and M. Tyers (University of Edinburgh, UK) for their generous gifts of bacculo virus constructs and anti-Met4 antibody, respectively. We also thank J. Salcedo (Roche Diagnostics Corporation) for support toward differential scanning fluorimetry experiments.

Author information

Authors and Affiliations

Authors

Contributions

Figure 1a, M.A. and R.D.; 1b, F.F. and M.L.; 1c, C.L. and J.H.; 2a, N.J.; 2b, N.J. and R.H.; 2c, K.F.; 2d,e, I.O. and N.P.; 3a, K.F.; 3b, K.F. and L.H.; 3c, K.F.; 3d, N.J.; 3e, M.A.; Table 1, X.T., M.A. and P.M.d.M.; X.C., B.L., R.V., Y.L., K.N.H., M.E.J. and N.Z. contributed new reagents and analysis; all authors discussed data; M.A., F.F., M.E.J., R.J.D., P.K. and J.H. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Peter Kaiser or Jing Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,2, Supplementary Figs. 1–8 and Supplmentary Note (PDF 1145 kb)

Supplementary Data Set 1 (XLS 57 kb)

Supplementary Data Set 2 (XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghajan, M., Jonai, N., Flick, K. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 28, 738–742 (2010). https://doi.org/10.1038/nbt.1645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1645

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research