Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How cancer metabolism is tuned for proliferation and vulnerable to disruption

A Corrigendum to this article was published on 02 January 2013

This article has been updated

Abstract

Cancer metabolism has received a substantial amount of interest over the past decade. The advances in analytical tools have, along with the rapid progress of cancer genomics, generated an increasingly complex understanding of metabolic reprogramming in cancer. As numerous connections between oncogenic signalling pathways and metabolic activities emerge, the importance of metabolic reprogramming in cancer is being increasingly recognized. The identification of metabolic weaknesses of cancer cells has been used to create strategies for treating cancer, but there are still challenges to be faced in bringing the drugs that target cancer metabolism to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of metabolic activities in cancer cells.
Figure 2: Epigenetic regulation by 2-hydroxyglutarate.
Figure 3: Exploiting metabolic reprogramming for cancer therapy.

Similar content being viewed by others

Change history

  • 02 January 2013

    Nature 491, 364–373 (2012); doi:10.1038/nature11706 We inadvertently omitted to cite reference 101, which should have been cited on page 267 at the end of the following sentence: “Recent evidence suggests that renal cyst formation after Fh1 deletion is independent of HIF, but involves activation of the NRF2 pathway by fumarate, and that activation of NRF2 may contribute to the development of fumarate-hydratase-deficient cancers51,101 .

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    ADS  CAS  PubMed  Google Scholar 

  2. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    CAS  Google Scholar 

  3. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  4. Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012). This study found that metabolic alterations, which are associated with tumorigenesis, are dependent on the oncogenic driver and the tissue in which the tumour arises.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    ADS  CAS  PubMed  Google Scholar 

  9. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    ADS  CAS  PubMed  Google Scholar 

  10. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    ADS  CAS  PubMed  Google Scholar 

  11. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    CAS  PubMed  Google Scholar 

  12. Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biol. 13, 310–316 (2011).

    CAS  PubMed  Google Scholar 

  13. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, L. et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483, 608–612 (2012).

    ADS  CAS  PubMed  Google Scholar 

  15. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011). References 15 to 17 describe the reductive carboxylation of α-ketoglutarate for the production of citrate.

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS  PubMed  Google Scholar 

  19. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ros, S. et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) as an important regulator of prostate cancer cell survival. Cancer Discov. 2, 328–343 (2012).

    CAS  PubMed  Google Scholar 

  21. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012). This study used stable isotope labelling and metabolic flux analysis to demonstrate that oncogenic KRAS induces the non-oxidative arm of the pentose phosphate pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiche, J., Brahimi-Horn, M. C. & Pouyssegur, J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 14, 771–794 (2010).

    CAS  PubMed  Google Scholar 

  23. Swietach, P., Hulikova, A., Vaughan-Jones, R. D. & Harris, A. L. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 29, 6509–6521 (2010).

    CAS  PubMed  Google Scholar 

  24. Halestrap, A. P. & Wilson, M. C. The monocarboxylate transporter family–role and regulation. IUBMB Life 64, 109–119 (2012).

    CAS  PubMed  Google Scholar 

  25. Le Floch, R. et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl Acad. Sci. USA 108, 16663–16668 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerlinger, M. et al. Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target. J. Pathol. 227, 146–156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. & Sivridis, E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632–637 (2006).

    CAS  PubMed  Google Scholar 

  28. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos, C. R. & Schulze, A. Lipid metabolism in cancer. FEBS J. 279, 2610–2623 (2012).

    CAS  PubMed  Google Scholar 

  30. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer 7, 763–777 (2007).

    CAS  PubMed  Google Scholar 

  31. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Hilvo, M. et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 71, 3236–3245 (2011).

    CAS  PubMed  Google Scholar 

  34. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012). This study reports that tumour-associated mutant forms of p53 can bind to SREBP and induce the expression of enzymes within the mevalonate pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shamma, A. et al. Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15, 255–269 (2009).

    CAS  PubMed  Google Scholar 

  37. Clendening, J. W. et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl Acad. Sci. USA 107, 15051–15056 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Emberson, J. R. et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS One 7, e29849 (2012).

    CAS  PubMed  Google Scholar 

  39. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Med. 17, 1498–1503 (2011).

    CAS  PubMed  Google Scholar 

  40. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev. Cancer 8, 705–713 (2008).

    CAS  Google Scholar 

  41. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    CAS  PubMed  Google Scholar 

  42. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  43. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 21, 894–899 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

    CAS  PubMed  Google Scholar 

  48. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011). This study shows that the expression of oncogenic alleles of KRAS, BRAF or MYC increases ROS detoxification by activating the NRF2-dependent antioxidant programme.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to antioxidant responses. Science 334, 1278–1283 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Rev. Cancer 5, 857–866 (2005).

    CAS  Google Scholar 

  51. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012). References 51 and 52 demonstrate that HIF-independent mechanisms involving the activation of NRF2 or the inhibition of α-ketoglutarate-dependent DNA and histone demethylases contribute to tumorigenesis in fumarate-hydratase- and succinate-dehydrogenase-deficient tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009). This study was the first to describe the neomorphic activity of mutant IDH1 and the production of 2-hydroxyglutarate in cancer.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Amary, M. F. et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 43, 1262–1265 (2011).

    CAS  PubMed  Google Scholar 

  60. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012). References 60 to 65 describe the role of 2-hydroxyglutarate in epigenetic regulation through regulation of α-ketoglutarate-dependent DNA and histone demethylases.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012). This study shows that 2-hydroxyglutarate activates proline hydroxylases and increases the degradation of HIF. This was associated with increased proliferation and transformation of astrocytes.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature Rev. Drug Discov. 10, 671–684 (2011).

    CAS  Google Scholar 

  69. Porporato, P. E., Dhup, S., Dadhich, R. K., Copetti, T. & Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2, 49 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Stein, M. et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70, 1388–1394 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011). References 71 and 72 used different strategies to identify the role of serine biosynthesis in supporting cancer-cell growth.

    CAS  PubMed  Google Scholar 

  73. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011). References 75 and 76 describe the application of metabolic models to predict drug targets in cancer and to identify synthetic-lethal metabolic processes in fumarate-hydratase-deficient tumours.

    ADS  CAS  PubMed  Google Scholar 

  77. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    CAS  PubMed  Google Scholar 

  79. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Toustrup, K. et al. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother. Oncol. 102, 122–129 (2012).

    CAS  PubMed  Google Scholar 

  81. Whitaker-Menezes, D. et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10, 1772–1783 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biol. 14, 276–286 (2012).

    CAS  PubMed  Google Scholar 

  83. Zhou, W. et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beloueche-Babari, M. et al. Histone deacetylase inhibition increases levels of choline kinase α and phosphocholine facilitating noninvasive imaging in human cancers. Cancer Res. 72, 990–1000 (2012).

    CAS  PubMed  Google Scholar 

  88. Rothman, D. L., De Feyter, H. M., de Graaf, R. A., Mason, G. F. & Behar, K. L. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed. 24, 943–957 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer 10, 267–277 (2010).

    CAS  Google Scholar 

  90. Mera, P. et al. C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem. Pharmacol. 77, 1084–1095 (2009).

    CAS  PubMed  Google Scholar 

  91. Altman, B. J. & Dang, C. V. Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS J. 279, 2598–2609 (2012).

    CAS  PubMed  Google Scholar 

  92. Michelakis, E. D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2, 31ra34 (2010).

    CAS  PubMed  Google Scholar 

  93. Jain, R. K. & Carmeliet, P. Tumor angiogenesis. Cell 149, 1408 (2012).

    CAS  PubMed  Google Scholar 

  94. Anastasiou, D. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chem. Biol. 8, 839–847 (2012).

    CAS  Google Scholar 

  95. Cheong, J. H. et al. Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol. Cancer Ther. 10, 2350–2362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rothbart, S. B., Racanelli, A. C. & Moran, R. G. Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 70, 10299–10309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Metallo, C. M., Walther, J. L. & Stephanopoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotechnol. 144, 167–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kurhanewicz, J., Bok, R., Nelson, S. J. & Vigneron, D. B. Current and potential applications of clinical 13C MR spectroscopy. J. Nucl. Med. 49, 341–344 (2008).

    CAS  PubMed  Google Scholar 

  100. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Santos and S. Ros for their critical reading and feedback. A.S. is funded by Cancer Research UK and the EMBO Young Investigator Programme. A.L.H. is funded by Cancer Research UK, the Oxford Cancer Imaging Centre, the Breast Cancer Research Foundation and the Oxford NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almut Schulze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, A., Harris, A. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012). https://doi.org/10.1038/nature11706

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11706

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer