Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular machines governing exocytosis of synaptic vesicles

Abstract

Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trafficking pathways in the nerve terminal.
Figure 2: Schematic depictions of domain structures and crystal structures of core proteins of the neuronal fusion machine.
Figure 3: Alternative models describing the steps between priming and fusion.
Figure 4: Transition states during membrane fusion.

Similar content being viewed by others

References

  1. Südhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004)

    PubMed  Google Scholar 

  2. Südhof, T. C. & Rizo, J. Synaptic vesicle exocytosis. Cold Spring Harb. Perspect. Biol. 3, a005637 (2011)

    PubMed  PubMed Central  Google Scholar 

  3. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009)

    ADS  PubMed  PubMed Central  Google Scholar 

  4. Brunger, A. T., Weninger, K., Bowen, M. & Chu, S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78, 903–928 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wickner, W. & Schekman, R. Membrane fusion. Nature Struct. Mol. Biol. 15, 658–664 (2008)

    CAS  Google Scholar 

  6. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nature Struct. Mol. Biol. 15, 665–674 (2008)

    CAS  Google Scholar 

  7. Verhage, M. & Sørensen, J. B. Vesicle docking in regulated exocytosis. Traffic 9, 1414–1424 (2008)

    CAS  PubMed  Google Scholar 

  8. Jahn, R. & Scheller, R. H. SNAREs–engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006)

    CAS  Google Scholar 

  9. Sørensen, J. B. Conflicting views on the membrane fusion machinery and the fusion pore. Annu. Rev. Cell Dev. Biol. 25, 513–537 (2009)

    PubMed  Google Scholar 

  10. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008)

    CAS  PubMed  Google Scholar 

  11. Siksou, L., Triller, A. & Marty, S. Ultrastructural organization of presynaptic terminals. Curr. Opin. Neurobiol. 21, 261–268 (2011)

    CAS  PubMed  Google Scholar 

  12. Fernáandez-Busnadiego, R. et al. Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. (Tokyo) 60 (suppl. 1). S137–S148 (2011)

    Google Scholar 

  13. Sigrist, S. J. & Sabatini, B. L. Optical super-resolution microscopy in neurobiology. Curr. Opin. Neurobiol. 22, 86–93 (2012)

    CAS  PubMed  Google Scholar 

  14. Kloepper, T. H., Kienle, C. N. & Fasshauer, D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998)

    CAS  PubMed  Google Scholar 

  16. Lerman, J. C., Robblee, J., Fairman, R. & Hughson, F. M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470–8479 (2000)

    CAS  PubMed  Google Scholar 

  17. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998)

    ADS  CAS  PubMed  Google Scholar 

  18. Stein, A., Weber, G., Wahl, M. C. & Jahn, R. Helical extension of the neuronal SNARE complex into the membrane. Nature 460, 525–528 (2009)This paper describes the X-ray structure of the synaptic SNARE complex with transmembrane regions.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanson, P. I., Heuser, J. E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310–315 (1997)

    CAS  PubMed  Google Scholar 

  20. Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nature Struct. Mol. Biol. 14, 890–896 (2007)

    CAS  Google Scholar 

  21. Wiederhold, K. & Fasshauer, D. Is assembly of the SNARE complex enough to fuel membrane fusion? J. Biol. Chem. 284, 13143–13152 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998)

    CAS  PubMed  Google Scholar 

  23. Fasshauer, D. & Margittai, M. A Transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 279, 7613–7621 (2004)

    CAS  PubMed  Google Scholar 

  24. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Margittai, M. et al. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc. Natl Acad. Sci. USA 100, 15516–15521 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pobbati, A. V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006)

    ADS  CAS  PubMed  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000)

    ADS  CAS  PubMed  Google Scholar 

  29. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neurosci. 2, 959–964 (1999)

    CAS  PubMed  Google Scholar 

  31. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nature Neurosci. 2, 965–971 (1999)

    CAS  PubMed  Google Scholar 

  32. Burkhardt, P., Hattendorf, D. A., Weis, W. I. & Fasshauer, D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27, 923–933 (2008)This paper reports that Munc18-1 interacts with two spatially separated binding sites of syntaxin-1a.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Misura, K. M., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404, 355–362 (2000)

    ADS  CAS  PubMed  Google Scholar 

  34. Yu, I. M. & Hughson, F. M. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26, 137–156 (2010)

    CAS  PubMed  Google Scholar 

  35. Betz, A., Okamoto, M., Benseler, F. & Brose, N. Direct interaction of the rat unc-13 homologue Munc13–1 with the N terminus of syntaxin. J. Biol. Chem. 272, 2520–2526 (1997)

    CAS  PubMed  Google Scholar 

  36. Ma, C., Li, W., Xu, Y. & Rizo, J. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nature Struct. Mol. Biol. 18, 542–549 (2011)

    CAS  Google Scholar 

  37. Toonen, R. F. & Verhage, M. Munc18–1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 30, 564–572 (2007)

    CAS  PubMed  Google Scholar 

  38. Furgason, M. L. et al. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc. Natl Acad. Sci. USA 106, 14303–14308 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khvotchev, M. et al. Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci. 27, 12147–12155 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerber, S. H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008)This paper and ref. 49 describe the complex phenotype of the LE mutant of syntaxin on docking and fusion of synaptic vesicles.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rathore, S. S. et al. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc. Natl Acad. Sci. USA 107, 22399–22406 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen, J., Tareste, D. C., Paumet, F., Rothman, J. E. & Melia, T. J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007)

    CAS  PubMed  Google Scholar 

  43. Xu, Y., Su, L. & Rizo, J. Binding of Munc18–1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49, 1568–1576 (2010)

    CAS  PubMed  Google Scholar 

  44. Zilly, F. E., Sørensen, J. B., Jahn, R. & Lang, T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 4, e330 (2006)

    PubMed  PubMed Central  Google Scholar 

  45. Wojcik, S. M. & Brose, N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55, 11–24 (2007)

    CAS  PubMed  Google Scholar 

  46. Basu, J. et al. A minimal domain responsible for Munc13 activity. Nature Struct. Mol. Biol. 12, 1017–1018 (2005)

    CAS  Google Scholar 

  47. Koch, H., Hofmann, K. & Brose, N. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem. J. 349, 247–253 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, W. et al. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19, 1443–1455 (2011)This crystal structure demonstrates that Munc13 is a member of the conserved CATCHR protein family involved in vesicle tethering.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammarlund, M., Palfreyman, M. T., Watanabe, S., Olsen, S. & Jorgensen, E. M. Open syntaxin docks synaptic vesicles. PLoS Biol. 5, e198 (2007)

    PubMed  PubMed Central  Google Scholar 

  50. Richmond, J. E., Weimer, R. M. & Jorgensen, E. M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koushika, S. P. et al. A post-docking role for active zone protein Rim. Nature Neurosci. 4, 997–1005 (2001)

    CAS  PubMed  Google Scholar 

  52. Kochubey, O., Lou, X. & Schneggenburger, R. Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 34, 237–246 (2011)

    CAS  PubMed  Google Scholar 

  53. Pang, Z. P. & Südhof, T. C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chapman, E. R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008)

    CAS  PubMed  Google Scholar 

  55. Groffen, A. J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yao, J., Gaffaney, J. D., Kwon, S. E. & Chapman, E. R. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147, 666–677 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Walter, A. M., Groffen, A. J., Sørensen, J. B. & Verhage, M. Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats? Trends Neurosci. 34, 487–497 (2011)

    CAS  PubMed  Google Scholar 

  58. Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nature Struct. Mol. Biol. 17, 568–575 (2010)

    CAS  Google Scholar 

  59. Yang, X., Kaeser-Woo, Y. J., Pang, Z. P., Xu, W. & Südhof, T. C. Complexin clamps asynchronous release by blocking a secondary Ca2+ sensor via its accessory alpha helix. Neuron 68, 907–920 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lai, A. L., Huang, H., Herrick, D. Z., Epp, N. & Cafiso, D. S. Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. J. Mol. Biol. 405, 696–706 (2011)

    CAS  PubMed  Google Scholar 

  61. Vrljic, M. et al. Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nature Struct. Mol. Biol. 17, 325–331 (2010)

    CAS  Google Scholar 

  62. Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006)

    CAS  PubMed  Google Scholar 

  63. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002)

    CAS  PubMed  Google Scholar 

  64. Bracher, A., Kadlec, J., Betz, H. & Weissenhorn, W. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277, 26517–26523 (2002)

    CAS  PubMed  Google Scholar 

  65. Brose, N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9, 1403–1413 (2008)

    CAS  PubMed  Google Scholar 

  66. Stein, A. & Jahn, R. Complexins living up to their name–new light on their role in exocytosis. Neuron 64, 295–297 (2009)

    CAS  PubMed  Google Scholar 

  67. Neher, E. Complexin: does it deserve its name? Neuron 68, 803–806 (2010)

    CAS  PubMed  Google Scholar 

  68. Kummel, D. et al. Complexin cross-links prefusion SNAREs into a zigzag array. Nature Struct. Mol. Biol. 18, 927–933 (2011)

    Google Scholar 

  69. Chicka, M. C., Hui, E., Liu, H. & Chapman, E. R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nature Struct. Mol. Biol. 15, 827–835 (2008)

    CAS  Google Scholar 

  70. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nature Struct. Mol. Biol. 14, 904–911 (2007)

    CAS  Google Scholar 

  71. Xue, M., Ma, C., Craig, T. K., Rosenmund, C. & Rizo, J. The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nature Struct. Mol. Biol. 15, 1160–1168 (2008)

    CAS  Google Scholar 

  72. Lee, H. K. et al. Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328, 760–763 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martens, S., Kozlov, M. M. & McMahon, H. T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007)

    ADS  CAS  PubMed  Google Scholar 

  74. Hui, E., Johnson, C. P., Yao, J., Dunning, F. M. & Chapman, E. R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Araç, D. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nature Struct. Mol. Biol. 13, 209–217 (2006)This study shows that synaptotagmin binds simultaneously to two membranes, bringing them into close proximity.

    Google Scholar 

  76. Sørensen, J. B. et al. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25, 955–966 (2006)

    PubMed  PubMed Central  Google Scholar 

  77. Walter, A. M., Wiederhold, K., Bruns, D., Fasshauer, D. & Sørensen, J. B. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis. J. Cell Biol. 188, 401–413 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wiederhold, K. et al. A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex. J. Biol. Chem. 285, 21549–21559 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Diao, J., Ishitsuka, Y. & Bae, W. R. Single-molecule FRET study of SNARE-mediated membrane fusion. Biosci. Rep. 31, 457–463 (2011)

    CAS  PubMed  Google Scholar 

  80. van den Bogaart, G. et al. One SNARE complex is sufficient for membrane fusion. Nature Struct. Mol. Biol. 17, 358–364 (2010)

    CAS  Google Scholar 

  81. Chernomordik, L. V. & Zimmerberg, J. Bending membranes to the task: structural intermediates in bilayer fusion. Curr. Opin. Struct. Biol. 5, 541–547 (1995)

    CAS  PubMed  Google Scholar 

  82. McMahon, H. T., Kozlov, M. M. & Martens, S. Membrane curvature in synaptic vesicle fusion and beyond. Cell 140, 601–605 (2010)

    CAS  PubMed  Google Scholar 

  83. van den Bogaart, G. et al. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature Struct. Mol. Biol. 18, 805–812 (2011)

    CAS  Google Scholar 

  84. Kuo, W., Herrick, D. Z. & Cafiso, D. S. Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together. Biochemistry 50, 2633–2641 (2011)

    CAS  PubMed  Google Scholar 

  85. Schwartz, M. L. & Merz, A. J. Capture and release of partially zipped trans-SNARE complexes on intact organelles. J. Cell Biol. 185, 535–549 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996)

    CAS  PubMed  Google Scholar 

  87. Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277, 7838–7848 (2002)

    CAS  PubMed  Google Scholar 

  88. Mohrmann, R., de Wit, H., Verhage, M., Neher, E. & Sørensen, J. B. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330, 502–505 (2010)Using a titration approach this study and ref. 89 reveal that neurotransmitter release requires only few SNARE complexes.

    ADS  CAS  PubMed  Google Scholar 

  89. Sinha, R., Ahmed, S., Jahn, R. & Klingauf, J. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc. Natl Acad. Sci. USA 108, 14318–14323 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shi, L. et al. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335, 1355–1359 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chan, Y. H., van Lengerich, B. & Boxer, S. G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Simonsson, L., Jonsson, P., Stengel, G. & Hook, F. Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers. ChemPhysChem 11, 1011–1017 (2010)

    CAS  PubMed  Google Scholar 

  93. Lygina, A. S., Meyenberg, K., Jahn, R. & Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int. Edn Engl. 50, 8597–8601 (2011)

    CAS  Google Scholar 

  94. Robson Marsden, H., Elbers, N. A., Bomans, P. H., Sommerdijk, N. A. & Kros, A. A reduced SNARE model for membrane fusion. Angew. Chem. Int. Edn Engl. 48, 2330–2333 (2009)

    Google Scholar 

  95. Avinoam, O. & Podbilewicz, B. Eukaryotic cell–cell fusion families. Curr. Top. Membr. 68, 209–234 (2011)

    CAS  PubMed  Google Scholar 

  96. Harrison, S. C. Viral membrane fusion. Nature Struct. Mol. Biol. 15, 690–698 (2008)

    CAS  Google Scholar 

  97. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nature Rev. Mol. Cell Biol. 11, 872–884 (2010)

    CAS  Google Scholar 

  98. Moss, T. J., Daga, A. & McNew, J. A. Fusing a lasting relationship between ER tubules. Trends Cell Biol. 21, 416–423 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kozlov, M. M. & Markin, V. S. Possible mechanism of membrane fusion [in Russian]. Biofizika 28, 242–247 (1983)

    CAS  PubMed  Google Scholar 

  100. Yang, L. & Huang, H. W. Observation of a membrane fusion intermediate structure. Science 297, 1877–1879 (2002)

    ADS  CAS  PubMed  Google Scholar 

  101. Aeffner, S., Reusch, T., Weinhausen, B. & Salditt, T. Structure, hydration barrier and curvature of membrane hemifusion stalks with varying lipid composition obtained by x-ray diffraction. Proc. Natl Acad. Sci. USA (in the press)

  102. Qian, S. & Huang, H. W. A novel phase of compressed bilayers that models the prestalk transition state of membrane fusion. Biophys. J. 102, 48–55 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chernomordik, L. V. & Kozlov, M. M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003)

    CAS  PubMed  Google Scholar 

  104. Kinnunen, P. K. Fusion of lipid bilayers: a model involving mechanistic connection to HII phase forming lipids. Chem. Phys. Lipids 63, 251–258 (1992)

    CAS  PubMed  Google Scholar 

  105. Risselada, H. J. & Grubmuller, H. How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr. Opin. Struct. Biol. 22, 187–196 (2012)

    CAS  PubMed  Google Scholar 

  106. Kozlov, M. M., McMahon, H. T. & Chernomordik, L. V. Protein-driven membrane stresses in fusion and fission. Trends Biochem. Sci. 35, 699–706 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kesavan, J., Borisovska, M. & Bruns, D. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131, 351–363 (2007)This study systematically measures the effect of extending the juxtamembrane region of synaptobrevin on neurotransmitter release.

    CAS  PubMed  Google Scholar 

  108. Knecht, V. & Grubmuller, H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys. J. 84, 1527–1547 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. ChemBioChem 12, 1049–1055 (2011)Using coarse-grain simulations, the transition states involved in SNARE-mediated membrane fusion are described on the basis of first principles.

    CAS  PubMed  Google Scholar 

  110. Xu, Y., Zhang, F., Su, Z., McNew, J. A. & Shin, Y. K. Hemifusion in SNARE-mediated membrane fusion. Nature Struct. Mol. Biol. 12, 417–422 (2005)

    CAS  Google Scholar 

  111. Wang, T., Smith, E. A., Chapman, E. R. & Weisshaar, J. C. Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1–5 ms resolution. Biophys. J. 96, 4122–4131 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Giraudo, C. G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005)

    ADS  CAS  PubMed  Google Scholar 

  114. Chernomordik, L. V. & Kozlov, M. M. Membrane hemifusion: crossing a chasm in two leaps. Cell 123, 375–382 (2005)

    CAS  PubMed  Google Scholar 

  115. Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nature Struct. Mol. Biol. 15, 675–683 (2008)

    CAS  Google Scholar 

  116. Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481–17487 (2000)

    CAS  PubMed  Google Scholar 

  117. Fuson, K. L., Montes, M., Robert, J. J. & Sutton, R. B. Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry 46, 13041–13048 (2007)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was supported by grants from the National Institutes of Health (3P01GM072694-05S1) to D.F. and R.J., of the Swiss National Fond to D.F. (31003A_133055) and of the Deutsche Forschungsgemeinschaft to D.F. (FA 297/3-1) and R.J. (SFB 803). The authors thank H. Grubmüller, E. Neher, J. Rissellada, G. van den Bogaart, M. Hernandez, J. Sørensen and J. Rizo for discussions and critical reading of the manuscript. We apologize to all colleagues whose work, although relevant, could not be mentioned and/or cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the manuscript.

Corresponding author

Correspondence to Reinhard Jahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, R., Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012). https://doi.org/10.1038/nature11320

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11320

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing