Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lessons on the pathogenesis of aneurysm from heritable conditions

Abstract

Aortic aneurysm is common, accounting for 1–2% of all deaths in industrialized countries. Early theories of the causes of human aneurysm mostly focused on inherited or acquired defects in components of the extracellular matrix in the aorta. Although several mutations in the genes encoding extracellular matrix proteins have been recognized, more recent discoveries have shown important perturbations in cytokine signalling cascades and intracellular components of the smooth muscle contractile apparatus. The modelling of single-gene heritable aneurysm disorders in mice has shown unexpected involvement of the transforming growth factor-β cytokine pathway in aortic aneurysm, highlighting the potential for new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of TAA in transforming growth factor-β vasculopathy syndromes.
Figure 2: The TGF-β and Ang II signalling pathways.
Figure 3: TGF-β signalling in heritable aneurysm syndromes.
Figure 4: TGF-β signalling in LDS aorta.

Similar content being viewed by others

References

  1. Szabo, Z. et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J. Med. Genet. 43, 255–258 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Loeys, B. et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum. Mol. Genet. 11, 2113–2118 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Dasouki, M. et al. Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am. J. Med. Genet. A 143A, 2635–2641 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Dietz, H. C. TGF-β in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J. Clin. Invest. 120, 403–407 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bergen, A. A. et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nature Genet. 25, 228–231 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Neptune, E. R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nature Genet. 33, 407–411 (2003). This study first implicated upregulation of TGF-β activity in the multisystem manifestations of Marfan syndrome.

    Article  PubMed  CAS  Google Scholar 

  7. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2 . Nature Genet. 37, 275–281 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nature Genet. 36, 855–860 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. van de Laar, I. M. B. H. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nature Genet. 43, 121–126 (2010).

    Article  CAS  Google Scholar 

  12. Coucke, P. J. et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nature Genet. 38, 452–457 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Huang, J. et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ. Res. 106, 583–592 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Horiguchi, M. et al. Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc. Natl Acad. Sci. USA 106, 19029–19034 (2009). This study shows fibulin-4-dependent recruitment of lysyl oxidase to elastin.

    Article  ADS  PubMed  Google Scholar 

  15. Maki, J. M. et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106, 2503–2509 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Atsawasuwan, P. et al. Lysyl oxidase binds transforming growth factor-β and regulates its signaling via amine oxidase activity. J. Biol. Chem. 283, 34229–34240 (2008). This biochemical analysis demonstrates direct inactivation of TGF-β ligand by the enzymatic activity of lysyl oxidase.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zacchigna, L. et al. Emilin1 links TGF-β maturation to blood pressure homeostasis. Cell 124, 929–942 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Choudhary, B. et al. Absence of TGF-β signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm. Genesis 47, 115–121 (2009).

    Article  PubMed  Google Scholar 

  19. Langlois, D. et al. Conditional inactivation of TGF-β type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res. 19, 1069–1082 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Arteaga-Solis, E. et al. Regulation of limb patterning by extracellular microfibrils. J. Cell Biol. 154, 275–281 (2001). This study demonstrates that fibrillins can act as positive modulators of TGF-β superfamily function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chung, A. W., Yang, H. H., Radomski, M. W. & van Breemen, C. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ. Res. 102, e73–e85 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. Bunton, T. E. et al. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ. Res. 88, 37–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Sakalihasan, N., Delvenne, P., Nusgens, B. V., Limet, R. & Lapière, C. M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Moustakas, A. & Heldin, C.-H. The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Carta, L. et al. p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J. Biol. Chem. 284, 5630–5636 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Holm, T. et al. Noncanonical TGF-β signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332, 358–361 (2011).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. Habashi, J. P. et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332, 361–365 (2011).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nature Med. 11, 1330–1338 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Purnell, R., Williams, I., Von Oppell, U. & Wood, A. Giant aneurysms of the sinuses of Valsalva and aortic regurgitation in a patient with Noonan's syndrome. Eur. J. Cardiothorac. Surg. 28, 346–348 (2005).

    Article  PubMed  Google Scholar 

  30. Friedman, J. M. et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet. Med. 4, 105–111 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. Tieu, B. C. et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119, 3637–3651 (2009). This paper describes a major role for adventitial macrophage in aortic dissection in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Onoda, M. et al. Lysyl oxidase resolves inflammation by reducing monocyte chemoattractant protein-1 in abdominal aortic aneurysm. Atherosclerosis 208, 366–369 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. Rodríguez-Vita, J. et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β-independent mechanism. Circulation 111, 2509–2517 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Wang, Y. et al. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J. Clin. Invest. 120, 422–432 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. King, V. L. et al. Interferon-γ and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation 119, 426–435 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhu, L. et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nature Genet. 38, 343–349 (2006). This was the first study to implicate the smooth muscle contraction apparatus in thoracic aortic aneurysm.

    Article  PubMed  CAS  Google Scholar 

  37. Pannu, H. et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum. Mol. Genet. 16, 2453–2462 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guo, D.-C. et al. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature Genet. 39, 1488–1493 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Hofmann Bowman, M. et al. S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ. Res. 106, 145–154 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Sheen, V. L. et al. Filamin A mutations cause periventricular heterotopia with Ehlers–Danlos syndrome. Neurology 64, 254–262 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Zhu, T.-N. et al. Filamin A-mediated down-regulation of the exchange factor Ras-GRF1 correlates with decreased matrix metalloproteinase-9 expression in human melanoma cells. J. Biol. Chem. 282, 14816–14826 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K. & Watanabe, K. Filamin associates with Smads and regulates transforming growth factor-β signaling. J. Biol. Chem. 276, 17871–17877 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. Wipff, P.-J., Rifkin, D. B., Meister, J.-J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hubchak, S. C., Runyan, C. E., Kreisberg, J. I. & Schnaper, H. W. Cytoskeletal rearrangement and signal transduction in TGF-β1-stimulated mesangial cell collagen accumulation. J. Am. Soc. Nephrol. 14, 1969–1980 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Samarakoon, R., Higgins, C. E., Higgins, S. P. & Higgins, P. J. Differential requirement for MEK/ERK and SMAD signaling in PAI-1 and CTGF expression in response to microtubule disruption. Cell. Signal. 21, 986–995 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lacro, R. V. et al. Rationale and design of a randomized clinical trial of β-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am. Heart J. 154, 624–631 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lee, M. K. et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yamashita, M. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 31, 918–924 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bachman, K. E. & Park, B. H. Duel nature of TGF-β signaling: tumor suppressor vs. tumor promoter. Curr. Opin. Oncol. 17, 49–54 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Waldo, K. L. et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev. Biol. 281, 78–90 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Majesky, M. W. Developmental basis of vascular smooth muscle diversity. Arterioscler. Thromb. Vasc. Biol. 27, 1248–1258 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. Topouzis, S. & Majesky, M. W. Smooth muscle lineage diversity in the chick embryo: two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-β. Dev. Biol. 178, 430–445 (1996). This study notes divergent TGF-β responsiveness in different aortic regions.

    Article  PubMed  CAS  Google Scholar 

  54. Carta, L. et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J. Biol. Chem. 281, 8016–8023 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    Article  ADS  PubMed  CAS  Google Scholar 

  56. Li, D. Y. et al. Elastin is an essential determinant of arterial morphogenesis. Nature 393, 276–280 (1998).

    Article  ADS  PubMed  CAS  Google Scholar 

  57. Rahkonen, O. et al. Mice with a deletion in the first intron of the Col1a1 gene develop age-dependent aortic dissection and rupture. Circ. Res. 94, 83–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. Malfait, F. et al. Three arginine to cysteine substitutions in the pro-α (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28, 387–395 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Schwarze, U. et al. Rare autosomal recessive cardiac valvular form of Ehlers–Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am. J. Hum. Genet. 74, 917–930 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Liu, X., Wu, H., Byrne, M., Krane, S. & Jaenisch, R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl Acad. Sci. USA 94, 1852–1856 (1997).

    Article  ADS  PubMed  CAS  Google Scholar 

  61. Superti-Furga, A., Gugler, E., Gitzelmann, R. & Steinmann, B. Ehlers–Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J. Biol. Chem. 263, 6226–6232 (1988). This was the first genetic study to link a single-gene disorder to aneurysmal disease.

    PubMed  CAS  Google Scholar 

  62. Plaisier, E. et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N. Engl. J. Med. 357, 2687–2695 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Pöschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. Kashtan, C. E. et al. Aortic abnormalities in males with Alport syndrome. Nephrol. Dial. Transplant. 25, 3554–3560 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wenstrup, R. J., Murad, S. & Pinnell, S. R. Ehlers–Danlos syndrome type VI: clinical manifestations of collagen lysyl hydroxylase deficiency. J. Pediatr. 115, 405–409 (1989).

    Article  PubMed  CAS  Google Scholar 

  66. Takaluoma, K. et al. Tissue-specific changes in the hydroxylysine content and cross-links of collagens and alterations in fibril morphology in lysyl hydroxylase 1 knock-out mice. J. Biol. Chem. 282, 6588–6596 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Salo, A. M. et al. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am. J. Hum. Genet. 83, 495–503 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ruotsalainen, H. et al. Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J. Cell Sci. 119, 625–635 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. Larsson, J. et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663–1673 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Oshima, M., Oshima, H. & Taketo, M. M. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179, 297–302 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Hsi, D. H., Ryan, G. F., Hellems, S. O., Cheeran, D. C. & Sheils, L. A. Large aneurysms of the ascending aorta and major coronary arteries in a patient with hereditary hemorrhagic telangiectasia. Mayo Clin. Proc. 78, 774–776 (2003).

    Article  PubMed  Google Scholar 

  72. Arthur, H. M. et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev. Biol. 217, 42–53 (2000).

    Article  PubMed  CAS  Google Scholar 

  73. Andersen, N. D. et al. Thoracic endografting in a patient with hereditary hemorrhagic telangiectasia presenting with a descending thoracic aneurysm. J. Vasc. Surg. 51, 468–470 (2010).

    Article  PubMed  Google Scholar 

  74. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 97, 2626–2631 (2000).

    Article  ADS  PubMed  CAS  Google Scholar 

  75. Cheng, C.-H. et al. Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc. Res. 81, 381–388 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  76. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  77. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    PubMed  CAS  Google Scholar 

  78. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Kamath, B. M. et al. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109, 1354–1358 (2004).

    Article  PubMed  Google Scholar 

  80. Distefano, G. et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol. 29, 2359–2371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hassane, S. et al. Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model. Arterioscler. Thromb. Vasc. Biol. 27, 2177–2183 (2007).

    Article  PubMed  CAS  Google Scholar 

  82. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  PubMed  CAS  Google Scholar 

  83. Yu, Q. et al. ENU induced mutations causing congenital cardiovascular anomalies. Development 131, 6211–6223 (2004).

    Article  PubMed  CAS  Google Scholar 

  84. Schildmeyer, L. A. et al. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle α-actin null mouse. FASEB J. 14, 2213–2220 (2000).

    Article  PubMed  CAS  Google Scholar 

  85. Morano, I. et al. Smooth-muscle contraction without smooth-muscle myosin. Nature Cell Biol. 2, 371–375 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl Acad. Sci. USA 103, 19836–19841 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  87. Araki, T. et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Med. 10, 849–857 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. Iwasaki, Y. et al. Coronary artery dilatation in LEOPARD syndrome. A child case and literature review. Congenit. Heart Dis. 4, 38–41 (2009).

    Article  PubMed  Google Scholar 

  89. Takahashi, H. et al. A hereditary model of slowly progressive polycystic kidney disease in the mouse. J. Am. Soc. Nephrol. 1, 980–989 (1991).

    PubMed  CAS  Google Scholar 

  90. Lee, T. C., Zhao, Y. D., Courtman, D. W. & Stewart, D. J. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101, 2345–2348 (2000).

    Article  PubMed  CAS  Google Scholar 

  91. Kuhlencordt, P. J. et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104, 448–454 (2001).

    Article  PubMed  CAS  Google Scholar 

  92. Cao, J. et al. Thoracic aortic disease in tuberous sclerosis complex: molecular pathogenesis and potential therapies in Tsc2+/ mice. Hum. Mol. Genet. 19, 1908–1920 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Raben, N. et al. Targeted disruption of the acid α-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J. Biol. Chem. 273, 19086–19092 (1998).

    Article  PubMed  CAS  Google Scholar 

  94. Rocha, P. P., Scholze, M., Bleiss, W. & Schrewe, H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development 137, 2723–2731 (2010).

    Article  PubMed  CAS  Google Scholar 

  95. Haldar, S. M. et al. Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation. Sci. Transl. Med. 2, 26ra26 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lopez, L. et al. Turner syndrome is an independent risk factor for aortic dilation in the young. Pediatrics 121, e1622–e1627 (2008).

    Article  PubMed  Google Scholar 

  98. Daugherty, A., Manning, M. W. & Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000). This study formed the basis for the Ang-II-infusion model of aneurysmal disease, the most widespread mouse model of aneurysm.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Anidjar, S. et al. Elastase-induced experimental aneurysms in rats. Circulation 82, 973–981 (1990).

    Article  PubMed  CAS  Google Scholar 

  100. Chiou, A. C., Chiu, B. & Pearce, W. H. Murine aortic aneurysm produced by periarterial application of calcium chloride. J. Surg. Res. 99, 371–376 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Arbustini for the use of the multidetector computer tomographic image in Fig. 1a. We acknowledge funding support from the US National Heart, Lung, and Blood Institute, the Howard Hughes Medical Institute, the US National Marfan Foundation and the William S. Smilow Center for Marfan Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry C. Dietz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, M., Dietz, H. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473, 308–316 (2011). https://doi.org/10.1038/nature10145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10145

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing