Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients

Abstract

Reports of cognitive decline, symptom worsening and brain atrophy in bipolar disorder (BD) suggest that the disease progresses over time. The worsening neuropathology may involve excitotoxicity and neuroinflammation. We determined protein and mRNA levels of excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. The brain tissue was matched for age, postmortem interval and pH. The results indicated statistically significant lower protein and mRNA levels of the N-methyl-D-aspartate receptors, NR-1 and NR-3A, but significantly higher protein and mRNA levels of interleukin (IL)-1β, the IL-1 receptor (IL-1R), myeloid differentiation factor 88, nuclear factor-kappa B subunits, and astroglial and microglial markers (glial fibrillary acidic protein, inducible nitric oxide synthase, c-fos and CD11b) in postmortem frontal cortex from BD compared with control subjects. There was no significant difference in mRNA levels of tumor necrosis factor alpha or neuronal nitric oxide synthase in the same region. These data show the presence of excitotoxicity and neuroinflammation in BD frontal cortex, with particular activation of the IL-R cascade. The changes may account for reported evidence of disease progression in BD and be a target for future therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lopez-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM . Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry 2002; 52: 93–100.

    Article  Google Scholar 

  2. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 2004; 55: 648–651.

    Article  Google Scholar 

  3. Rajkowska G . Cell pathology in bipolar disorder. Bipolar Disord 2002; 4: 105–116.

    Article  Google Scholar 

  4. Buchsbaum MS, Wu J, DeLisi LE, Holcomb H, Kessler R, Johnson J et al. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 1986; 10: 137–152.

    Article  CAS  Google Scholar 

  5. Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES et al. Decision-making in mania: a PET study. Brain 2001; 124: 2550–2563.

    Article  CAS  Google Scholar 

  6. Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl) 1992; 106: 14–18.

    Article  CAS  Google Scholar 

  7. Kim YK, Jung HG, Myint AM, Kim H, Park SH . Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 2007; 104: 91–95.

    Article  CAS  Google Scholar 

  8. Hashimoto K, Sawa A, Iyo M . Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 2007; 62: 1310–1316.

    Article  CAS  Google Scholar 

  9. Mueller HT, Meador-Woodruff JH . NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 2004; 71: 361–370.

    Article  Google Scholar 

  10. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 2003; 8: 241–245.

    Article  CAS  Google Scholar 

  11. Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ . Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A2 and its transcription factor, activator protein-2. J Neurochem 2007; 102: 1918–1927.

    Article  CAS  Google Scholar 

  12. Chang YC, Kim HW, Rapoport SI, Rao JS . Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: cross-talk between excitotoxicity and neuroinflammation. Neurochem Res 2008; 33: 2318–2323.

    Article  CAS  Google Scholar 

  13. Huang J, Gao X, Li S, Cao Z . Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc Natl Acad Sci USA 1997; 94: 12829–12832.

    Article  CAS  Google Scholar 

  14. Rao JS, Kim H-W, Lee HJ, Rapoport SI . Up-regulated arachidonic acid cascade enzymes and their transcription factors in post-mortem frontal cortex from bipolar disorder patients. Society for Neuroscience; 2007 Sandi ego 2007 p 707 705/Z704.

  15. Cao Z, Henzel WJ, Gao X . IRAK: a kinase associated with the interleukin-1 receptor. Science 1996; 271: 1128–1131.

    Article  CAS  Google Scholar 

  16. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z . MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7: 837–847.

    Article  CAS  Google Scholar 

  17. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV . TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–446.

    Article  CAS  Google Scholar 

  18. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252–256.

    Article  CAS  Google Scholar 

  19. Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA . Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the induced synthesis. Proc Natl Acad Sci USA 1993; 90: 4475–4479.

    Article  CAS  Google Scholar 

  20. Spriggs DR, Sherman ML, Imamura K, Mohri M, Rodriguez C, Robbins G et al. Phospholipase A2 activation and autoinduction of tumor necrosis factor gene expression by tumor necrosis factor. Cancer Res 1990; 50: 7101–7107.

    CAS  PubMed  Google Scholar 

  21. Jupp OJ, Vandenabeele P, MacEwan DJ . Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 2003; 374: 453–461.

    Article  CAS  Google Scholar 

  22. Bauer MK, Lieb K, Schulze-Osthoff K, Berger M, Gebicke-Haerter PJ, Bauer J et al. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur J Biochem 1997; 243: 726–731.

    Article  CAS  Google Scholar 

  23. Acarin L, Peluffo H, Gonzalez B, Castellano B . Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain. J Neurosci Res 2002; 68: 745–754.

    Article  CAS  Google Scholar 

  24. Rogers A, Schmuck G, Scholz G, Griffiths R, Meredith C, Schousboe A et al. Improvements in an in-vitro assay for excitotoxicity by measurement of early gene (c-fos mRNA) levels. Arch Toxicol 2005; 79: 129–139.

    Article  CAS  Google Scholar 

  25. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  Google Scholar 

  26. Rao JS, Rapoport SI, Kim H-W . Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients. Int J Neuropharmacol 2009; 29: 1–10.

    Google Scholar 

  27. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP . Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 2006; 6: 413–420.

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  29. Rothwell NJ, Luheshi G . Pharmacology of interleukin-1 actions in the brain. Adv Pharmacol 1994; 25: 1–20.

    Article  CAS  Google Scholar 

  30. Benveniste EN . Cytokines: influence on glial cell gene expression and function. In Blalock JE (ed). Neuroimmunoendocrinology. Karger, Basel, 1997, pp 31–75.

    Chapter  Google Scholar 

  31. Oliveira RM, Guimaraes FS, Deakin JF . Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 2008; 41: 333–341.

    Article  CAS  Google Scholar 

  32. Shan Y, Carlock LR, Walker PD . NMDA receptor overstimulation triggers a prolonged wave of immediate early gene expression: relationship to excitotoxicity. Exp Neurol 1997; 144: 406–415.

    Article  CAS  Google Scholar 

  33. Rogers A, Schmuck G, Scholz G, Williams DC . c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicol Sci 2004; 82: 562–569.

    Article  CAS  Google Scholar 

  34. McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH . Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127: 108–118.

    Article  CAS  Google Scholar 

  35. Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T . Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci Lett 2003; 345: 53–56.

    Article  CAS  Google Scholar 

  36. Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 2006; 84: 214–221.

    Article  Google Scholar 

  37. Gascon S, Deogracias R, Sobrado M, Roda JM, Renart J, Rodriguez-Pena A et al. Transcription of the NR1 subunit of the N-methyl-D-aspartate receptor is down-regulated by excitotoxic stimulation and cerebral ischemia. J Biol Chem 2005; 280: 35018–35027.

    Article  CAS  Google Scholar 

  38. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA . Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 1995; 15: 6498–6508.

    Article  CAS  Google Scholar 

  39. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 1995; 15: 6509–6520.

    Article  CAS  Google Scholar 

  40. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 1998; 393: 377–381.

    Article  CAS  Google Scholar 

  41. Dinarello CA . The biological properties of interleukin 1. Eur Cytokine Netw 1994; 5: 517–531.

    CAS  PubMed  Google Scholar 

  42. Siebenlist U, Franzoso G, Brown K . Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10: 405–455.

    Article  CAS  Google Scholar 

  43. Webster MJ, O'Grady J, Kleinman JE, Weickert CS . Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 2005; 133: 453–461.

    Article  CAS  Google Scholar 

  44. Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 2004; 69: 317–323.

    Article  Google Scholar 

  45. Brietzke E, Kapczinski F . TNF-alpha as a molecular target in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1355–1361.

    Article  CAS  Google Scholar 

  46. Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL . Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res 1998; 780: 294–303.

    Article  CAS  Google Scholar 

  47. Tong W, Shah D, Xu J, Diehl JA, Hans A, Hannink M et al. Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). J Mol Neurosci 1999; 12: 89–99.

    Article  CAS  Google Scholar 

  48. Sun GY, Xu J, Jensen MD, Simonyi A . Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 2004; 45: 205–213.

    Article  CAS  Google Scholar 

  49. Luschen S, Adam D, Ussat S, Kreder D, Schneider-Brachert W, Kronke M et al. Activation of ERK1/2 and cPLA(2) by the p55 TNF receptor occurs independently of FAN. Biochem Biophys Res Commun 2000; 274: 506–512.

    Article  CAS  Google Scholar 

  50. Dinarello CA . The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 2002; 20: S1–13.

    CAS  Google Scholar 

  51. Benes FM . Searching for unique endophenotypes for schizophrenia and bipolar disorder within neural circuits and their molecular regulatory mechanisms. Schizophr Bull 2007; 33: 932–936.

    Article  Google Scholar 

  52. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2006; 31: 1659–1674.

    Article  CAS  Google Scholar 

  53. Basselin M, Chang L, Chen M, Bell JM, Rapoport SI . Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 2008; 33: 2229–2240.

    Article  CAS  Google Scholar 

  54. Basselin M, Villacreses NE, Chen M, Bell JM, Rapoport SI . Chronic carbamazepine administration reduces N-methyl-D-aspartate receptor-initiated signaling via arachidonic acid in rat brain. Biol Psychiatry 2007; 62: 934–943.

    Article  CAS  Google Scholar 

  55. Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI . Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 2007; 102: 761–772.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Harvard Brain Bank, Boston, MA for providing the postmortem brain samples under PHS grant number R24MH068855. This research was entirely supported by the Intramural Research Programs of the National Institute on Aging and the National Institute of Environmental Health Sciences, National Institutes of Health Bethesda, MD 20892. We thank the National Cancer Institute (NCI) and the Center for Cancer Research (CCR) Fellows Editorial Board for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Harry, G., Rapoport, S. et al. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 15, 384–392 (2010). https://doi.org/10.1038/mp.2009.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.47

Keywords

This article is cited by

Search

Quick links