Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models

Abstract

Local gene transfer of the human Lim mineralization protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. To develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP-3 and seeded on a hydroxyapatite/collagen matrix prior to autologous implantation. Here, we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing, as determined by X-rays, histology and three-dimensional microcomputed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3 in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Baltzer AW, Lattermann C, Whalen JD, Ghivizzani S, Wooley P, Krauspe R et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop Relat Res 2000; 379 (Suppl): S120–S125.

    Article  Google Scholar 

  2. Lattanzi W, Pola E, Pecorini G, Logroscino CA, Robbins PD . Gene therapy for in vivo bone formation: recent advances. Eur Rev Med Pharmacol Sci 2005; 9: 167–174.

    CAS  PubMed  Google Scholar 

  3. Blum JS, Barry MA, Mikos AG, Jansen JA . In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum Gene Ther 2003; 14: 1689–1701.

    Article  CAS  Google Scholar 

  4. Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL et al. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Therapy 2003; 10: 2013–2019.

    Article  CAS  Google Scholar 

  5. Lee JY, Peng H, Usas A, Musgrave D, Cummins J, Pelinkovic D et al. Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2. Hum Gene Ther 2002; 13: 1201–1211.

    Article  CAS  Google Scholar 

  6. Lieberman JR, Daluiski A, Stevenson S, Wu L, McAllister P, Lee YP et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81: 905–917.

    Article  CAS  Google Scholar 

  7. Mauney JR, Kaplan DL, Volloch V . Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials 2004; 25: 3233–3243.

    Article  CAS  Google Scholar 

  8. Mauney JR, Jaquiery C, Volloch V, Heberer M, Martin I, Kaplan DL . In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 2005; 26: 3173–3185.

    Article  CAS  Google Scholar 

  9. Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 2001; 3: 449–461.

    Article  CAS  Google Scholar 

  10. Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002; 110: 751–759.

    Article  CAS  Google Scholar 

  11. Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005; 11: 390–398.

    Article  CAS  Google Scholar 

  12. Tsuda H, Wada T, Yamashita T, Hamada H . Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med 2005; 7: 1322–1334.

    Article  CAS  Google Scholar 

  13. Yang M, Ma QJ, Dang GT, Ma K, Chen P, Zhou CY . In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 2005; 7: 273–281.

    Article  CAS  Google Scholar 

  14. Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR . Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003; 85: 905–911.

    Article  Google Scholar 

  15. Zhang XS, Linkhart TA, Chen ST, Peng H, Wergedal JE, Guttierez GG et al. Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 2004; 6: 4–15.

    Article  CAS  Google Scholar 

  16. Nussenbaum B, Rutherford RB, Teknos TN, Dornfeld KJ, Krebsbach PH . Ex vivo gene therapy for skeletal regeneration in cranial defects compromised by postoperative radiotherapy. Hum Gene Ther 2003; 14: 1107–1115.

    Article  CAS  Google Scholar 

  17. Shen HC, Peng H, Usas A, Gearhart B, Cummins J, Fu FH et al. Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone 2004; 34: 982–992.

    Article  CAS  Google Scholar 

  18. Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH . Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2002; 8: 441–452.

    Article  CAS  Google Scholar 

  19. Gugala Z, Olmsted-Davis EA, Gannon FH, Lindsey RW, Davis AR . Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Therapy 2003; 10: 1289–1296.

    Article  CAS  Google Scholar 

  20. Hirata K, Tsukazaki T, Kadowaki A, Furukawa K, Shibata Y, Moriishi T et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone 2003; 32: 502–512.

    Article  CAS  Google Scholar 

  21. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB . Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000; 11: 1201–1210.

    Article  CAS  Google Scholar 

  22. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108: 17–29.

    Article  CAS  Google Scholar 

  23. Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H et al. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 2001; 83-A: 364–376.

    Article  CAS  Google Scholar 

  24. Boden SD, Liu Y, Hair GA, Helms JA, Hu D, Racine M et al. LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation. Endocrinology 1998; 139: 5125–5134.

    Article  CAS  Google Scholar 

  25. Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998; 23: 2486–2492.

    Article  CAS  Google Scholar 

  26. Liu Y, Hair GA, Boden SD, Viggeswarapu M, Titus L . Overexpressed LIM mineralization proteins do not require LIM domains to induce bone. J Bone Miner Res 2002; 17: 406–414.

    Article  CAS  Google Scholar 

  27. Sangadala S, Boden SD, Viggeswarapu M, Liu Y, Titus L . LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads. J Biol Chem 2006; 281: 17212–17219.

    Article  CAS  Google Scholar 

  28. Pola E, Gao W, Zhou Y, Pola R, Lattanzi W, Sfeir C et al. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 2004; 11: 683–693.

    Article  CAS  Google Scholar 

  29. Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998; 23: 59–66.

    Article  Google Scholar 

  30. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324.

    Article  CAS  Google Scholar 

  31. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S . Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008; 19: 239–247.

    Article  CAS  Google Scholar 

  32. Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C, Titus L . Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am 2003; 85-A: 1030–1039.

    Article  Google Scholar 

  33. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 2004; 29: 2603–2611.

    Article  Google Scholar 

  34. Young DW, Pratap J, Javed A, Weiner B, Ohkawa Y, van Wijnen A et al. SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. J Cell Biochem 2005; 94: 720–730.

    Article  CAS  Google Scholar 

  35. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  36. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G . Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 2003; 67: 618–625.

    Article  Google Scholar 

  37. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M . The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989; 4: 3–11.

    Article  CAS  Google Scholar 

  38. Sasov AY . Microtomography. Part 1: methods and equipment. J Microsc 1987; 147: 169–178.

    Article  Google Scholar 

Download references

Acknowledgements

Enrico Pola was supported by a grant of the Italian Society of Orthopaedics and Traumatology. We thank Kaori Okada and Sun Huijie (Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA), and Alessandro Sbriccoli (Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy), for their invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Pola.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lattanzi, W., Parrilla, C., Fetoni, A. et al. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 15, 1330–1343 (2008). https://doi.org/10.1038/gt.2008.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.116

Keywords

This article is cited by

Search

Quick links