Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular targets for breast cancer therapy and prevention

Abstract

The recent completion of the human genome sequence has raised great hopes for the discovery of new breast cancer therapies based on newly-discovered genes linked to breast cancer development and progression. Here we describe breast cancer therapies that have emerged from gene-based scientific efforts over the past 20 years and that are now approved for clinical testing or treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular targets for breast cancer therapy and chemoprevention.

Steve Horwitz

Similar content being viewed by others

References

  1. McPherson, K., Steel, C.M. & Dixon, J.M. ABC of breast diseases. Breast cancer epidemiology, risk factors, and genetics. Br. Med. J. 321, 624–628 (2000).

    Article  CAS  Google Scholar 

  2. Greenlee, R.T., Murray, T., Bolden, S. & Wingo, P.A. Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33 (2000).

    Article  CAS  Google Scholar 

  3. Saphner, T., Tormey, D.C. & Gray, R. Annual hazard rates of recurrence for breast cancer after primary therapy. J. Clin. Oncol. 14, 2738–2746 (1996).

    Article  CAS  Google Scholar 

  4. Hortobagyi, G.N. Developments in chemotherapy of breast cancer. Cancer 88, 3073–3079 (2000).

    Article  CAS  Google Scholar 

  5. Carter, S.K. Single and combination nonhormonal chemotherapy in breast cancer. Cancer 30, 1543–1555 (1972).

    Article  CAS  Google Scholar 

  6. Fossati, R, et al. Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J. Clin. Oncol. 16, 3439–3460 (1998).

    Article  CAS  Google Scholar 

  7. Lanni, J.S., Lowe, S.W., Licitra, E.J., Liu, J.O. & Jacks, T. p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA 94, 9679–9683 (1997).

    Article  CAS  Google Scholar 

  8. Peto, J. & Mack, T.M. High constant incidence in twins and other relatives of women with breast cancer Nature Genet. 26, 411–414 (2000).

    Article  CAS  Google Scholar 

  9. Hortobagyi, G. Adjuvant therapy for breast cancer. Annu. Rev. Med. 51, 377–392 (2000).

    Article  CAS  Google Scholar 

  10. Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    Article  CAS  Google Scholar 

  11. Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102–6114 (2000).

    Article  CAS  Google Scholar 

  12. Hong, W.K. & Ullrich A.U. The role of EGFR in solid tumors and implication for therapy. Oncol. Biotherapeutics 1, 1–30 (2000).

    Google Scholar 

  13. Cardiello, F. et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000).

    Google Scholar 

  14. Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139 (1985).

    Article  CAS  Google Scholar 

  15. Slamon, D.J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  Google Scholar 

  16. Baselga, J. Clinical trials of Herceptin (trastuzumab). Eur. J. Cancer 37, S18–24 (2001).

    Article  CAS  Google Scholar 

  17. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001)

    Article  CAS  Google Scholar 

  18. Pietras, R.J. et al. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 59, 1347–1355 (1999).

    CAS  PubMed  Google Scholar 

  19. Kurokawa, H. et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60, 5887–5894 (2000).

    CAS  PubMed  Google Scholar 

  20. Lee, R.J. et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell Biol. 20, 672–683 (2000).

    Article  CAS  Google Scholar 

  21. Pestell, R.G. et al. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocrine Rev. 20, 501–534 (1999).

    CAS  Google Scholar 

  22. Sausville, E.A., Johnson, J., Alley, M., Zaharevitz, D. & Senderowicz, A.M. Inhibition of CDKs as a therapeutic modality. Ann. NY Acad. Sci. 910, 207–221 (2000).

    Article  CAS  Google Scholar 

  23. Senderowicz, A.M. & Sausville, E.A. Preclinical and clinical development of cyclin-dependent kinase modulators. J. Natl. Cancer. Inst. 92, 376–387 (2000).

    Article  CAS  Google Scholar 

  24. Sliwkowski, M.X. et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70 (1999).

    CAS  Google Scholar 

  25. Mazumdar, A. et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biol. 3, 30–37 (2001).

    Article  CAS  Google Scholar 

  26. Yang, X. et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 60, 6890–6894 (2000).

    CAS  PubMed  Google Scholar 

  27. Richon, V.M., Sandhoff, T.W., Rifkind, R.A. & Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97, 10014–10019 (2000).

    Article  CAS  Google Scholar 

  28. Huang, L. & Pardee, A.B. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol. Med. 6, 849–866 (2000).

    Article  CAS  Google Scholar 

  29. Gayther, S.A. et al. Mutations truncating the EP300 acetylase in human cancers. Mutations truncating the EP300 acetylase in human cancers. Nature Genet. 24, 300–303 (2000).

    Article  CAS  Google Scholar 

  30. Xing, X. et al. The ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis. Nature Med. 6, 189–195 (2000).

    Article  CAS  Google Scholar 

  31. Tazebay, U.H. et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nature Med. 6, 871–878 (2000).

    Article  CAS  Google Scholar 

  32. Heffelfinger, S.C., Miller, M.A., Yassin, R. & Gear, R. Angiogenic growth factors in preinvasive breast disease. Clin Cancer Res. 5, 2867–2876 (1999).

    CAS  PubMed  Google Scholar 

  33. Saaristo, A., Karpanen, T. & Alitalo, K. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene 19, 6122–6129 (2000).

    Article  CAS  Google Scholar 

  34. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    Article  CAS  Google Scholar 

  35. Kerbel, R.S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515 (2000).

    Article  CAS  Google Scholar 

  36. Millauer, B., Shawver, L.K., Plate, K.H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  CAS  Google Scholar 

  37. Fong, T.A. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).

    CAS  PubMed  Google Scholar 

  38. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  Google Scholar 

  39. Gail, M.H. et al. Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer. J. Natl. Cancer Inst. 91, 1829–1846 (1999).

    Article  CAS  Google Scholar 

  40. Rosenbaum Smith, S.M. & Osborne, M.P. Breast cancer chemoprevention Am. J. Surg. 180, 249–251 (2000).

    Article  CAS  Google Scholar 

  41. Torrisi, R. & Decensi, A. Fenretinide and cancer prevention. Curr. Oncol. Rep. 2, 263–270 (2000).

    Article  CAS  Google Scholar 

  42. Yang, L.M., Tin- U C., Wu K. & Brown, P. Role of retinoid receptor in the prevention and treatment of breast cancer. J. Mammary Gland Biol. Neoplasia 4, 377–388 (1999).

    Article  CAS  Google Scholar 

  43. Schiff, R. et al. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J. Natl. Cancer Inst. 92, 1926–1934 (2000).

    Article  CAS  Google Scholar 

  44. Harris, R.E., Alshafie, G.A, Abou-Issa, H. & Seibert, K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 60, 2101–2113 (2000).

    CAS  PubMed  Google Scholar 

  45. Torrance, C.J. et al. Combinatorial chemoprevention of intestinal neoplasia using an NSAID and an EGFR-kinase inhibitor. Nature Med. 6, 1024–1028 (2000).

    Article  CAS  Google Scholar 

  46. Vadlamui, R. et al. Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 18, 305–314 (1999).

    Article  Google Scholar 

  47. Hynes, N.E. & Stern, D.F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 119, 165–184 (1994).

    Google Scholar 

  48. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  49. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  50. Houston, S.J. et al. Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br. J. Cancer. 79, 1220–1226 (1999).

    Article  CAS  Google Scholar 

  51. Sjogren, S., Inganas, M., Lindgren, A., Holmberg, L. & Bergh, J. Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J. Clin. Oncol. 16, 462–469 (1998).

    Article  CAS  Google Scholar 

  52. Archer, S.G. et al. Expression of ras p21, p53 and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Br. J. Cancer 72, 1259–1266 (1995).

    Article  CAS  Google Scholar 

  53. Berns, E.M. et al. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene 159, 11–18 (1995).

    Article  CAS  Google Scholar 

  54. Leitzel, K. et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J. Clin. Oncol. 13, 1129–1135 (1995).

    Article  CAS  Google Scholar 

  55. Nicholson, R.I. et al. Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Breast Cancer Res. Treat. 29, 117–25 (1994).

    Article  CAS  Google Scholar 

  56. Borg, A. et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 81, 137–144 (1994).

    Article  CAS  Google Scholar 

  57. Wright, C. et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br. J. Cancer 65, 118–121 (1992).

    Article  CAS  Google Scholar 

  58. Jarvinen, T.A., Holli, K., Kuukasjarvi, T. & Isola, J.J. Predictive value of topoisomerase IIα and other prognostic factors for epirubicin chemotherapy in advanced breast cancer. Br. J. Cancer 77, 2267–2273 (1998).

    Article  CAS  Google Scholar 

  59. Rozan, S. et al. No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int. J. Cancer 79, 27–33 (1998).

    Article  CAS  Google Scholar 

  60. Paik, S. et al., erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J. Natl. Cancer Inst. 90, 1361–1370 (1998).

    Article  CAS  Google Scholar 

  61. Jacquemier, J. et al. Breast cancer response to adjuvant chemotherapy in correlation with erbB2 and p53 expression. Anticancer Res. 14, 2773–2778 (1994).

    CAS  PubMed  Google Scholar 

  62. Allred, D.C. et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum. Pathol. 23, 974–979 (1992).

    Article  CAS  Google Scholar 

  63. Gusterson, B.A. et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J. Clin. Oncol 10, 1049–1056 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.U. is an inventor of patents that cover anti-HER2 antibody development (Herceptin) and anti-VEGFR 2 drugs. He has no financial interest in Genentech. He is a scientific advisor to Pharmacia Corporation on the development of anti-angiogenesis drugs SU5416 and SU6668.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bange, J., Zwick, E. & Ullrich, A. Molecular targets for breast cancer therapy and prevention. Nat Med 7, 548–552 (2001). https://doi.org/10.1038/87872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/87872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing