Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands

Abstract

We report here the in vivo diagnostic use of a peptide–dye conjugate consisting of a cyanine dye and the somatostatin analog octreotate as a contrast agent for optical tumor imaging. When used in whole-body in vivo imaging of mouse xenografts, indotricarbocyanine-octreotate accumulated in tumor tissue. Tumor fluorescence rapidly increased and was more than threefold higher than that of normal tissue from 3 to 24 h after application. The targeting conjugate was also specifically internalized by primary human neuroendocrine tumor cells. This imaging approach, combining the specificity of ligand/receptor interaction with near-infrared fluorescence detection, may be applied in various other fields of cancer diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical nature of the conjugates.
Figure 2: Specific binding and endocytosis of the IDCC-labeled octreotate.
Figure 3: Internalization and cellular retention as measured by flow cytometry.
Figure 4: Specific and long-lasting in vivo targeting of tumors.
Figure 5: Microscopic analysis of nude mouse tumor tissue sections 6 h after injection of the targeting conjugate.
Figure 6: Internalization of IDCC-octreotate into human neuroendocrine tumor cells ex vivo.

Similar content being viewed by others

References

  1. Axelrad, A.M. et al. High-resolution chromoendoscopy for the diagnosis of diminutive colon polyps: implications for colon cancer screening. Gastroenterology 110, 1253–1258 (1996).

    Article  CAS  Google Scholar 

  2. Acosta, M.M. & Boyce, H.W. Jr. Chromoendoscopy: where is it useful? J. Clin. Gastroenterol. 27, 13–20 (1998).

    Article  CAS  Google Scholar 

  3. Fleischer, D.E. Chromoendoscopy and magnification endoscopy in the colon. Gastrointest. Endosc. 49, S45–S49 (1999).

    Article  CAS  Google Scholar 

  4. Wang, T.D. et al. Fluorescence endoscopic imaging of human colonic adenomas. Gastroenterology 111, 1182–1191 (1996).

    Article  CAS  Google Scholar 

  5. Stepp, H., Sroka, R. & Baumgartner, R. Fluorescence endoscopy of gastrointestinal diseases: basic principles, techniques and clinical experience. Endoscopy 30, 379–386 (1998).

    Article  CAS  Google Scholar 

  6. Marcon, N.E. & Wilson, B.C. The value of fluorescence techniques in gastrointestinal endoscopy: better than the endoscopist's eye? I: The North American experience. Endoscopy 30, 419–421 (1998).

    Article  CAS  Google Scholar 

  7. Haringsma, J. & Tytgat, G.N. The value of fluorescence techniques in gastrointestinal endoscopy: better than the endoscopist's eye? I: The European experience. Endoscopy 30, 416–418 (1998).

    Article  CAS  Google Scholar 

  8. Brand, S. et al. Detection of colonic dysplasia by light-induced fluorescence endoscopy: a pilot study. Int. J. Colorectal Dis. 14, 63–68 (1999).

    Article  CAS  Google Scholar 

  9. Folli et al. Antibody–indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54, 2643–2649 (1994).

    CAS  PubMed  Google Scholar 

  10. Ballou, B. et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother. 41, 257–263 (1995).

    Article  CAS  Google Scholar 

  11. Licha, K. et al. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 72, 392–398 (2000).

    Article  CAS  Google Scholar 

  12. Becker, A. et al. Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem. Photobiol. 72, 234–241 (2000).

    Article  CAS  Google Scholar 

  13. Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis-associated fibronectin isoform. Nat. Biotechnol. 15, 1271–1275 (1997).

    Article  CAS  Google Scholar 

  14. Weissleder, R., Tung, C.-H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  Google Scholar 

  15. Goldsmith, S.J. Receptor imaging: competitive or complementary to antibody imaging? Semin. Nucl. Med. 27, 85–93 (1997).

    Article  CAS  Google Scholar 

  16. Reubi, J.C. Relevance of somatostatin receptors and other peptide receptors in pathology. Endocr. Pathol. 8, 11–20 (1997).

    Article  CAS  Google Scholar 

  17. Ehlers, R.A. et al. Gut peptide receptor expression in human pancreatic cancers. Ann. Surg. 231, 838–848 (2000).

    Article  CAS  Google Scholar 

  18. Reubi, J.C., Lang, W., Maurer, R., Koper, J.W. & Lamberts, S.W.J. Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res. 47, 5758–5764 (1987).

    CAS  PubMed  Google Scholar 

  19. John, M. et al. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut 38, 33–39 (1996).

    Article  CAS  Google Scholar 

  20. Schaer, J.C., Waser, B., Mengod, G. & Reubi, J.C. Somatostatin receptor subtypes sst1, sst2, sst3 and sst5 expression in human pituitary, gastroentero-pancreatic and mammary tumors: comparison of mRNA analysis with receptor autoradiography. Int. J. Cancer 70, 530–537 (1997).

    Article  CAS  Google Scholar 

  21. Lamberts, S.W.J., Bakker, W.H., Reubi, J.-C. & Krenning, E.P. Somatostatin receptor imaging. In vivo localization of tumors with a radiolabeled somatostatin analog. J. Steroid Biochem. Mol. Biol. 37, 1079–1082 (1990).

    Article  CAS  Google Scholar 

  22. Wiedenmann, B. et al. Gastroenteropancreatic tumor imaging with somatostatin receptor scintigraphy. Semin. Oncol. 21, 29–32 (1994).

    CAS  PubMed  Google Scholar 

  23. Jensen, R.T., Gibril, F. & Termanini, B. Definition of the role of somatostatin receptor scintigraphy in gastrointestinal neuroendocrine tumor localization. Yale J. Biol. Med. 70, 481–500 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis, J.S. et al. Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy J. Med. Chem. 42, 1341–1347 (1999).

    Article  CAS  Google Scholar 

  25. Licha, K. et al. Synthesis, characterization and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem. 12, 44–50 (2001).

    Article  CAS  Google Scholar 

  26. Lamberts, S.W., Chayvialle, J.-A. & Krenning, E.P. The visualization of gastroenteropancreatic endocrine tumors. Metabolism 41, Suppl. 2, 111–115 (1992).

    Article  CAS  Google Scholar 

  27. Wängberg, B. et al. Intraoperative detection of somatostatin-receptor-positive neuroendocrine tumors using indium-111-labelled DTPA-D-Phe1-octreotide. Br. J. Cancer 73, 770–775 (1996).

    Article  Google Scholar 

  28. Denzler, B. & Reubi, J.C. Expression of somatostatin receptors in peritumoral veins of human tumors. Cancer 85, 188–198 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yvonne Giesecke, Michaela Nieter, Christiane Rheinländer, Udo Swiderski, and Stefan Wisniewski for excellent technical assistance. This study was supported in part by the Bundesministerium für Bildung und Forschung (0310941) and the Deutsche Forschungsgemeinschaft (SFB 366/A5, TFB 17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Wiedenmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Hessenius, C., Licha, K. et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19, 327–331 (2001). https://doi.org/10.1038/86707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing