Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers

Abstract

Peptide nucleic acids (PNAs) may be a potent tool for gene function studies in medically important parasitic organisms, especially those that have not before been accessible to molecular genetic knockout approaches. One such organism is Entamoeba histolytica, the causative agent of amebiasis, which infects about 500 million people and is the cause of clinical disease in over 40 million each year, mainly in the tropical and subtropical world. We used PNA antisense oligomers to inhibit expression of an episomally expressed gene (neomycin phosphorotransferase, NPT) and a chromosomal gene (EhErd2, a homolog of Erd2, a marker of the Golgi system in eukaryotic cells) in axenically cultured trophozoites of E. histolytica. Measurement of NPT enzyme activity and EhErd2 protein levels, as well as measurement of cellular proliferation, revealed specific decreases in expression of the target genes, and concomitant inhibition of cell growth, in trophozoites treated with micromolar concentrations of unmodified antisense PNA oligomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of antisense biotinylated PNAs in trophozoites of strain HK9 after 2 h (A,B) and 24 h (C,D) incubation with 20 μM PNA.
Figure 2: Neomycin phosphorotransferase activity of lysates of HK9 trophozoites treated with 20 μM NEO17ATG antisense PNA for 96 h.
Figure 3: Erd2 protein levels in lysates of HK9 trophozoites treated with 10 μM ERD17ATG antisense PNA for 96 h.
Figure 4: Effect of PNA treatment on trophozoite growth.

Similar content being viewed by others

References

  1. Bloom, B. & Cerami, A. Biomedical science and the third world: under the volcano. Ann. NY Acad. Sci. 569, 36–44 (1989).

    Article  Google Scholar 

  2. Hyrup, B. & Nielsen, P. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg. Med. Chem. 1, 5–23 (1996).

    Article  Google Scholar 

  3. Soomets, U., Hallbrink, M. & Langel, U. Antisense properties of peptide nucleic acids. Front. Biosci. 4, D782–786 (1999).

    Article  CAS  Google Scholar 

  4. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861 (1998).

    Article  CAS  Google Scholar 

  5. Branden, L.J., Mohamed A.J. & Smith, C.I. A peptide nucleic acid–nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787 (1999).

    Article  CAS  Google Scholar 

  6. Cutrona, G. et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol. 18, 300–303 (2000).

    Article  CAS  Google Scholar 

  7. Good, L. & Nielsen, P.E. Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. USA 95, 2073–2076 (1998).

    Article  CAS  Google Scholar 

  8. Good, L. & Nielsen, P.E. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. 16, 355–358 (1998).

    Article  CAS  Google Scholar 

  9. McLaughlin, J. & Aley, S. The biochemistry and functional morphology of the Entamoeba. Protozoology 32, 221–240 (1985).

    Article  CAS  Google Scholar 

  10. Bakker-Grunwald, T. & Wöstmann, C. Entamoeba histolytica as a model for the primitive eukaryotic cell. Parasitol. Today 9, 27–31 (1993).

    Article  CAS  Google Scholar 

  11. Bhattacharya, A., Satish, S., Bagchi, A. & Bhattacharya, S. The genome of Entamoeba histolytica. Int. J. Parasitol. 30, 401–410 (2000).

    Article  CAS  Google Scholar 

  12. Petri, W.A. & Ramakrishnan, G. Applying antisense technology to the study of Entamoeba histolytica pathogenesis. Trends Microbiol. 7, 471–473 (1999).

    Article  CAS  Google Scholar 

  13. Diamond, L.S., Harlow, D.R. & Cunnick, C.C. A new method for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans. Roy. Soc. Trop. Med. Hyg. 72, 413–432 (1978).

    Article  Google Scholar 

  14. Martínez-Palomo, A. The biology of Entamoeba histolytica. (John Wiley & Sons, Chichester, England; 1982).

    Google Scholar 

  15. López-Revilla, R. & Gomez, R. Entamoeba histolytica, E. invadens, and E. moshkovskii: fluctuation of the DNA content of axenic trophozoites. Exp. Parasitol. 44, 243–248 (1978)

    Article  Google Scholar 

  16. Willhoeft, U. & Tannich, E. The electrophoretic karyotype of Entamoeba histolytica. Mol. Biochem. Parasitol. 99, 41–53 (1999).

    Article  CAS  Google Scholar 

  17. Bracha, R., Nuchamowitz, Y., Leippe, M. & Mirelman, D. Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence. Mol. Microbiol. 34, 463–472 (1999).

    Article  CAS  Google Scholar 

  18. Ankri, S. et al. Antisense inhibition of expression of the light subunit (35 kDa) of the Gal/GalNac lectin complex inhibits Entamoeba histolytica virulence. Mol. Microbiol. 33, 327–337 (1999).

    Article  CAS  Google Scholar 

  19. Semenza, J.C., Hardwick, K.G., Dean, N. & Pelham, H.R.B. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    Article  CAS  Google Scholar 

  20. Sanchez-Lopez, R. et al. Cloning and expression of the Entamoeba histolytica Erd2 gene. Mol. Biochem. Parasitol. 92, 355–359 (1998).

    Article  CAS  Google Scholar 

  21. Tyler, B.M. et al. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood–brain barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA 96, 7053–7058 (1999).

    Article  CAS  Google Scholar 

  22. Giovine, M. et al. Synthesis and characterization of a specific peptide nucleic acid that inhibits expression of inducible NO synthase. FEBS Lett. 426, 33–36 (1998).

    Article  CAS  Google Scholar 

  23. Dhar, S.K., Vines, R.R., Bhattacharya, S. & Petri, W.A. Ribosomal DNA fragments enhance the stability of transfected DNA in Entamoeba histolytica. J. Eukaryot. Microbiol. 45, 656–660 (1998).

    Article  CAS  Google Scholar 

  24. Platt, S.G. & Yang, N.S. Dot assay for phosphotransferase activity in crude cell extracts. Anal. Biochem. 162, 529–535 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CONACyT (Consejo Nacional de Ciencia y Technología) grant 27826-N (Mexico), Dirección General de Asusntos del Personal Académico grant 207097 (Mexico), a collaboration travel grant from the Centro Nazionale per la Ricerca (Italy) and CONACyT (Mexico). We wish to thank Angeles Gutiérrez, Xóchitl Alvarado, Enrico Millo, Gianluca Damonte, and Drs. Paul Lizardi, Mario Zurita and Eduardo Horjales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Alagón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, R., Olvera, A., Sánchez, R. et al. Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nat Biotechnol 19, 231–234 (2001). https://doi.org/10.1038/85671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing