Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Quantification of target gene expression by imaging reporter gene expression in living animals

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring target gene expression indirectly by imaging reporter gene expression when the two genes are simultaneously expressed from a bi-cistronic vector containing an IRES.
Figure 2: Attenuation of gene expression in bi-cistronic vectors studied by transient transfection of C6 cells.
Figure 3: Correlation of HSV1-sr39tk and D2R expression studied in transient and stable transfection studies.
Figure 4: Accumulation of 8-3H-PCV and FPCV correlates with HSV1-sr39tk expression in C6 cells stably transfected with pCMV-D2R-IRES-sr39tk.
Figure 5: MicroPET imaging of correlated bi-cistronic reporter gene expression.

References

  1. Contag, P.R., Olomu, I.N., Stevenson, D.K. & Contag, C.H. Bioluminescent indicators in living mammals. Nature Med. 4, 245–247 (1998).

    Article  CAS  Google Scholar 

  2. Phelps, M.E., Hoffman, E.J., Mullani, N.A. & Ter-Pogossian, M.M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975).

    CAS  PubMed  Google Scholar 

  3. Phelps, M.E. PET: A biological imaging technique. Neurochem. Res. 16, 929–994 (1991).

    Article  CAS  Google Scholar 

  4. Cherry, S.R. et al. MicroPET: A high-resolution PET scanner for imaging small animals. IEEE Trans. Nucl. Sci. 44, 1161–1166 (1997).

    Article  CAS  Google Scholar 

  5. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  Google Scholar 

  6. MacLaren, D.C. et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791 (1999).

    Article  CAS  Google Scholar 

  7. Gambhir, S.S. et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir. J. Nucl. Med. 39, 2003–2011 (1998).

    CAS  PubMed  Google Scholar 

  8. Alauddin, M.M. & Conti, P.S. Synthesis and preliminary evaluation of 9-(4-18F—fluoro-3-hydroxymethylbutyl)guanine (18F-FHBG): A new potential imaging agent for viral infection and gene therapy using PET. Nucl. Med. Biol. 25, 175–180 (1998).

    Article  CAS  Google Scholar 

  9. Tjuvajev, J.G. et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341 (1998).

    CAS  PubMed  Google Scholar 

  10. Gambhir, S.S., Barrio, J.R., Herschman, H.R. & Phelps, M.E. Assays for noninvasive imaging of reporter gene expression. Nucl. Med. Biol. 26, 481–490 (1999).

    Article  CAS  Google Scholar 

  11. Gambhir, S.S. et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 97, 2785–2790 (2000).

    Article  CAS  Google Scholar 

  12. Black, M.E., Newcomb, T.G., Wilson, H.-M.P. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  13. Jang, S.K., Davies, M.V., Kaufman, R.J. & Wimmer, E. Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63, 1651–1660 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson, R., Howell, M. & Kaminski, A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 15, 477–483 (1990).

    Article  Google Scholar 

  15. Kaufman, R., Davies, M., Wasley, L. & Michnick, D. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucl. Acids Res. 19, 4485–4490 (1991).

    Article  CAS  Google Scholar 

  16. Davies, M. & Kaufman, R. The sequence context of the initiation codon in the encephalomyocarditis virus leader modulates efficiency of internal translation initiation. J. Virol. 66, 1924–1932 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tjuvajev, J.G. et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia. 1, 315–320 (1999)

    Article  CAS  Google Scholar 

  18. Zhou, Y., Aran, J., Gottesman, M. & Pastan, I. Co-expression of human adenosine deaminase and multidrug resistance using a bi-cistronic retroviral vector. Hum. Gene Ther. 9, 287–293 (1998).

    Article  CAS  Google Scholar 

  19. Sachs, A.B., Sarnow, P. & Hentze, M.W. Starting at the beginning, middle, and end: Translation initiation in eukaryotes. Cell 89, 831–838 (1997).

    Article  CAS  Google Scholar 

  20. Barrio, J.R. et al. Carbon-8 radiofluorination of purines: A general approach to probe design for gene therapy in humans. J. Labelled Compounds Radiopharmaceuticals 40, 348 (1997).

    Google Scholar 

  21. Hamacher, K., Coenen, H.H. & Stocklin, G. Efficient stereospecific synthesis of no-carrier-added 2[18F]-fluoro-2-deoxy-D-glucose using amino polyether supported nucleophilic substitution. J. Nucl. Med. 27, 235–238 (1986).

    CAS  PubMed  Google Scholar 

  22. Satyamurthy, N. et al. 3-(2′-[18F]fluoroethyl)spiperone, a potent dopamine antagonist: Synthesis, structural analysis and in vivo utilization in human. Appl. Rad. Isotopes 41, 113–129 (1990).

    Article  CAS  Google Scholar 

  23. Qi, J., Leahy, R.M., Cherry, S.R., Chatziioannou, A. & Farquhar, T.H. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys. Med. Biol. 43, 1001–1013 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Black, D. Kaufman, and the UCLA Gene Imaging Consortium for helpful discussions, and A. Green, K. Nguyen, E. Bauer, D. MacLaren, X. Sun, G. Castanedo, V. Dominguez, J. Edwards, W. Ladno, D. J. Liu and R. Sumida and the UCLA cyclotron ‘crew’ for technical assistance. This work was supported in part by funding from the Department of Energy DE-FC03-87ER60615, National Institutes of Health RO1 CA82214-01 and UCLA-Jonsson Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Annala, A., Barrio, J. et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 6, 933–937 (2000). https://doi.org/10.1038/78704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/78704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing