Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo visualization of gene expression using magnetic resonance imaging

Abstract

High-resolution in vivo imaging of gene expression is not possible in opaque animals by existing techniques. Here we present a new approach for obtaining such images by magnetic resonance imaging (MRI) using an MRI contrast agent that can indicate reporter gene expression in living animals. We have prepared MRI contrast agents in which the access of water to the first coordination sphere of a chelated paramagnetic ion is blocked with a substrate that can be removed by enzymatic cleavage. Following cleavage, the paramagnetic ion can interact directly with water protons to increase the MR signal. Here, we report an agent where galactopyranose is the blocking group. This group renders the MRI contrast agent sensitive to expression of the commonly used marker gene, β-galactosidase. To cellular resolution, regions of higher intensity in the MR image correlate with regions expressing marker enzyme. These results offer the promise of in vivo mapping of gene expression in transgenic animals and validate a general approach for constructing a family of MRI contrast agents that respond to biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the transition of EgadMe from a weak to a strong relaxivity state.
Figure 2: MRI detection of β-galactosidase mRNA expression in living X. laevis embryos.
Figure 3: MRI detection of regions positive for β-galactosidase within a single living X. laevis embryo.
Figure 4: Regional identification of cells expressing β-galactosidase using EgadMe.
Figure 5: EgadMe permits MRI detection of lacZ gene expression.

Similar content being viewed by others

References

  1. Davidson, E.H. Gene activity in early development, Edn. 3 (Academic Press, New York, NY; 1986).

    Google Scholar 

  2. Gerhart, J. & Kirschner, M. Cells embryos and evolution. (Blackwell, New York, NY; 1997).

    Google Scholar 

  3. Wilson, E.B. The cell in development and inheritance (Macmillan, New York, NY; 1986).

    Google Scholar 

  4. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–88 (1998).

    Article  CAS  Google Scholar 

  5. Nunez, L., Faught, W.J. & Frawley, L.S. Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA 95, 9648–9653 (1998).

    Article  CAS  Google Scholar 

  6. Arnone, M.I. et al. Green fluorescent protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. Development 124, 4649–4659 (1997).

    CAS  PubMed  Google Scholar 

  7. Chiu, W. et al. Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330 ( 1996).

    Article  CAS  Google Scholar 

  8. Amsterdam, A., Lin, S. & Hopkins, N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol. 171, 123–129 ( 1995).

    Article  CAS  Google Scholar 

  9. Prasher, D. Using GFP to see the light. TIG 11, 320– 323 (1995).

    Article  CAS  Google Scholar 

  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  11. Tjuvajev, J.G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).

    CAS  PubMed  Google Scholar 

  12. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression:a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  PubMed  Google Scholar 

  13. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 ( 1999).

    Article  CAS  Google Scholar 

  14. Li, W.H., Fraser, S.E. & Meade, T.J. A calcium-sensitive magnetic resonance imaging contrast agent. J. Am. Chem. Soc. 121, 1413– 1414 (1999).

    Article  CAS  Google Scholar 

  15. Bowtell, R.W. et al. NMR microscopy of single neurons using spin-echo and line-narrowed 2DFT imaging. Magn. Reson. Med. 33, 790– 794 (1995).

    Article  CAS  Google Scholar 

  16. Rofe, C.T., Vannoort, J., Back, P.J. & Callaghan, P.T. NMR microscopy using large, pulsed magnetic-field gradients. J. Magn. Reson. B. 108, 125–136 ( 1995).

    Article  CAS  Google Scholar 

  17. Mellin, A.F. et al. 3-Dimensional magnetic-resonance microangiography of rat neurovasculature. Mag. Reson. Med. 32, 199– 205 (1994).

    Article  CAS  Google Scholar 

  18. Liang, Z.P. & Lauterbur, P.C. An efficient method for dynamic magnetic-resonance imaging. IEEE Trans. Med. Imaging 13, 677–686 (1994).

    Article  CAS  Google Scholar 

  19. Jacobs, R.E. & Fraser, S.E. Magnetic resonance microscopy of embryonic-cell lineages and movements. Science 263, 681–684 (1994).

    Article  CAS  Google Scholar 

  20. Hueber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242– 249 (1998).

    Article  CAS  Google Scholar 

  21. Su, M.Y., Muhler, A., Lao, X.Y. & Nalcioglu, O. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Mag. Res. Med. 39, 259– 269 (1998).

    Article  CAS  Google Scholar 

  22. Aime, S., Botta, M., Fasano, M. & Terreno, E. Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998).

    Article  CAS  Google Scholar 

  23. Shukla, R. et al. Design of conformationally rigid dimeric MRI agents. Mag. Res. Med. 35, 928–931 (1996).

    Article  CAS  Google Scholar 

  24. Bertini, I. & Luchinat, C. NMR of paramagnetic molecules in biological systems (eds Gray, H.B. & Lever, A.B.P.) (Benjamin/Cummings, Menlo Park, CA; 1986).

    Google Scholar 

  25. Moore, A., Basilion, J.P., Chiocca, E.A. & Weissleder, R. Measuring transferrin receptor gene expression by NMR imaging. BBA 1402, 239–249 ( 1998).

    CAS  PubMed  Google Scholar 

  26. Weissleder, R. et al. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204, 425– 429 (1997).

    Article  CAS  Google Scholar 

  27. Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew. Chem. Intl. Edn. Engl. 726–728 (1997).

  28. Ahrens, E.T., Rothbacher, U., Jacobs, R.E. & Fraser, S.E. A model for MRI contrast enhancement using T1 agents. Proc. Natl. Acad. Sci. USA 95, 8443–8448 (1998).

    Article  CAS  Google Scholar 

  29. Zhang, X. et al. pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of macrocyclic amino carboxylates. Inorg. Chem 31, 5597–5600 (1992).

    Article  CAS  Google Scholar 

  30. Horrocks, W.D. & Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334– 340 (1979).

    Article  CAS  Google Scholar 

  31. Wetts, R. & Fraser, S.E. Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map. Development 105, 9– 15 (1989).

    CAS  PubMed  Google Scholar 

  32. Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173– 3183 (1996).

    CAS  PubMed  Google Scholar 

  33. Kayyem, J.F., Kumar, R.M., Fraser, S.E. & Meade, T.J. Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem. Biol. 2, 615–620 (1995).

    Article  CAS  Google Scholar 

  34. Bogdanov, A. & Weissleder, R. The development of in vivo imaging systems to study gene expression. Trends Biotech. 16, 5–10 (1998 ).

    Article  CAS  Google Scholar 

  35. Josephson, L., Tung, C., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem. 10, 186– 191 (1999).

    Article  CAS  Google Scholar 

  36. Kay, B.K., Peng, H.B., Methods in Cell Biology Vol. 6 (Academic Press, NY, 1991).

    Google Scholar 

Download references

Acknowledgements

The authors thank Chris Kintner for the pCS2+ cB-gal construct; C. LaBonne, R. Davis for the CS2P-nGFP construct; and Markus Friedrich for the pRc/RSV.ZL construct. This work was supported by the Biological Imaging Center of the Beckman Institute, National Institute of Health (AR42671), the National Institute of Child Health and Human Development, the National Center for Research Resources, and the Human Brain Project (with contributions from the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Science Foundation). A.L. and M.H. were supported in part by an award from the Caltech Grubstakes program and Research Corporation Technologies, Tucson, AZ. M.H. was also supported by a fellowship from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott E. Fraser or Thomas J. Meade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louie, A., Hüber, M., Ahrens, E. et al. In vivo visualization of gene expression using magnetic resonance imaging . Nat Biotechnol 18, 321–325 (2000). https://doi.org/10.1038/73780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing