Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene

Abstract

LITTLE is known about virus–host cell interactions that regulate the lytic potential of viruses during productive replication. Sindbis virus (SV), a single-stranded positive-sense RNA virus in the alphavirus genus (family Togaviridae), results in lytic infection in most vertebrate cell lines, but persistent productive infection in post-mitotic neurons1. The cellular oncogene bcl-2, which encodes an inner mitochondrial membrane protein of Mr 26,000 (ref. 2), blocks programmed cell death (apoptosis) in neurons3. We therefore investigated whether SV infection induces programmed cell death in non-neuronal cells, and if so, whether virus-induced programmed cell death can be blocked by transfection with bcl-2. We demonstrate that SV infection of baby hamster kidney (BHK-2), mouse neuroblastoma (N18), and rat prostatic adenocarcinoma (AT-3) cells results in programmed cell death, whereas SV infection of bcl-2-transfected AT-3 cells results in long-term persistent productive infection. Thus cellular bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levine, B. et al. Science 254, 856–860 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Nature 348, 334–336 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Garcia, I., Martinou, I., Tsujimoto, Y. & Martinou, J. C. Science 258, 302–304 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Terai, C., Kornbluth, R. S., Pauza, C. D., Richman, D. D. & Carson, D. A. J. clin. Invest. 87, 1710–1715 (1991).

    Article  CAS  Google Scholar 

  5. Laurent-Crawford, A. G. et al. Virology 185, 829–839 (1991).

    Article  CAS  Google Scholar 

  6. Rao, L. et al. Proc. natn. Acad. Sci. U.S.A. 89, 7742–7746 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Wylie, A. H., Kerr, J. F. R. & Curie, A. R. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  Google Scholar 

  8. Arends, M. J. & Wylie, A. H. Int. Rev. exp. Path. 32, 223–254 (1991).

    Article  CAS  Google Scholar 

  9. Johnson, R. T., McFarland, H. F. & Levy, S. E. J. infect. Dis. 125, 257–262 (1972).

    Article  CAS  Google Scholar 

  10. Martin, D. P. & Johnson, E. M. Jr in Apoptosis: The Molecular Basis of Cell Death (eds Tomei, L. D. & Cope, F. O.) 247–261 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  11. Server, A. C. & Mobley, W. C. in Apoptosis: The Molecular Basis of Cell Death (eds Tomei, L. D. & Cope, F. O.) 263–278 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  12. Negrini, M., Silini, E., Kozak, C., Tsujimoto, Y. & Croce, C. M. Cell 49, 455–463 (1987).

    Article  CAS  Google Scholar 

  13. Hockenbery, D. M., Zutter, M., Hickey, W., Nahm, M. & Korsmeyer, S. J. Proc. natn. Acad. Sci. U.S.A. 88, 6961–6965 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Froshauer, S., Kartenbeck, A. & Helenius, A. J. Cell Biol. 107, 2075–2086 (1988).

    Article  CAS  Google Scholar 

  15. Buchmeier, M. J., Welsh, R. M., Dutko, F. J. & Oldstone, M. B. A. Adv. Immun. 30, 275–331 (1980).

    Article  CAS  Google Scholar 

  16. Clem, R. J., Fechmeimer, M. & Miller, L. K. Science 254, 1388–1390 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Henderson, S. et al. Cell 65, 1107–1115 (1991).

    Article  CAS  Google Scholar 

  18. Gregory, C. D. et al. Nature 349, 612–614 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Chou, J. & Roizman, B. Proc. natn. Acad. Sci. U.S.A. 89, 3266–3270 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Nunez, G. et al. J. Immun. 144, 3602–3610 (1990).

    CAS  Google Scholar 

  21. Martikainen, P., Kyprianou, N., Tucker, R. W. & Isaacs, J. T. Cancer Res. 51, 4693–4700 (1991).

    CAS  PubMed  Google Scholar 

  22. Sorensen, C. M., Barry, M. A. & Eastman, A. J. natn. Cancer Inst. 82, 749–755 (1990).

    Article  Google Scholar 

  23. Tsujimoto, Y. & Croce, C. Proc. natn. Acad. Sci. U.S.A. 83, 5214–5218 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Levine, B. & Griffin, D. E. J. Virol. 66, 6429–6435 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reed, J. C., Cuddy, M., Slabiak, T., Croce, C. M. & Nowell, P. C. Nature 336, 259–261 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Cepko, C., Roberts, B. & Mulligan, R. Cell 37, 1063–1062 (1984).

    Article  Google Scholar 

  27. Trieger, B. & Isaacs, J. J. Urol. 140, 1580–1586 (1988)

    Article  Google Scholar 

  28. Reed, J. C. et al. Cancer Res. 51, 6529–6538 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, B., Huang, Q., Isaacs, J. et al. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361, 739–742 (1993). https://doi.org/10.1038/361739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361739a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing