Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The INK4a/ARF network in tumour suppression

Abstract

The retinoblastoma protein (RB) and p53 transcription factor are regulated by two distinct proteins that are encoded by the INK4a/ARF locus. Genes encoding these four tumour suppressors are disabled, either in whole or in part, in most human cancers. A complex signalling network that interconnects the activities of RB and p53 monitors oncogenic stimuli to provide a cell-autonomous mode of tumour surveillance.

Key Points

  • The human INK4a/ARF locus encodes two distinct tumour-suppressor proteins — p16INK4a and p14ARF (p19Arf in the mouse) — in part, through the utilization of alternative reading frames. p16INK4a and p14ARF function by promoting the activities of the retinoblastoma protein (RB) and p53 transcription factor, respectively.

  • p16INK4a is an inhibitor of the cyclin D-dependent kinases, CDK4 and CDK6, whereas p14ARF antagonizes the function of the p53 negative regulator, HDM2 (Mdm2 in the mouse).

  • p16INK4a blocks cell cycle progression through two mechanisms. It disrupts and inhibits holoenzyme complexes containing D-type cyclins and either CDK4 or CDK6. It also mobilizes bound Cip/Kip proteins, which indirectly blocks the activities of cyclin E- and A-dependent CDK2.

  • Although four different INK4 proteins act as potent inhibitors of cyclin D-dependent kinases, p16INK4a plays the most prominent role in tumour suppression, presumably because of its unique pattern of expression.

  • Selective disruption of either Ink4a or Arf coding sequences in the mouse germ line shows that both genes act as tumor suppressors and have roles in cellular senescence.

  • Specific combinations of genetic lesions that affect the Ink4a and Arf genes on homologous chromosomes predispose to many different forms of cancer.

  • Arf is activated by oncogenic signals, such as Myc overexpression or constitutive Ras activation. By activating p53, p19Arf diverts incipient cancer cells to alternative fates — either to p53-dependent growth arrest or apoptosis.

  • A complex signalling network — consisting of many branch points, feed-forward and feedback controls — connects the activities of RB and p53. Disruption of this signalling network could be an essential feature of the life history of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ink4a/Arf locus.
Figure 2: The Ink4 family.
Figure 3: Activity of p16INK4a and CDK inhibitors.
Figure 4: A signalling network central to tumour suppression.

Similar content being viewed by others

References

  1. Weinberg, R. A. The retinoblastoma gene and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  2. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  3. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  Google Scholar 

  4. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  5. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  6. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from diverging signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  Google Scholar 

  7. Sionov, R. V. & Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145–6157 (1999).

    Article  CAS  Google Scholar 

  8. Bates, S. & Vousden, K. H. Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci. 55, 28–37 (1999).

    Article  CAS  Google Scholar 

  9. Juven-Gershon, T. & Oren, M. Mdm2: the ups and downs. Mol. Med. 5, 71–83 (1999).

    Article  CAS  Google Scholar 

  10. Zhang, Y. & Xiong, Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ. 12, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  11. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell. Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  12. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    Article  CAS  Google Scholar 

  13. Llanos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell Biol. 3, 445–452 (2001).

    Article  CAS  Google Scholar 

  14. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  Google Scholar 

  15. Kamb, A. et al. A cell cycle regulator involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  Google Scholar 

  16. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochem. Biophys. Acta Rev. Cancer 1378, F115–F177 (1998).

    Article  CAS  Google Scholar 

  17. Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–593 (1998).

    CAS  PubMed  Google Scholar 

  18. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  Google Scholar 

  19. Roussel, M. F. The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311–5317 (1999).

    Article  CAS  Google Scholar 

  20. Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4a-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057 (1996).

    Article  CAS  Google Scholar 

  21. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).

    Article  CAS  Google Scholar 

  22. Muller H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  Google Scholar 

  23. Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev. 14, 690–703 (2000).Disruption of mouse E2f3 , but not E2f1 , reduces transcription of E2f-responsive genes and retards entry into S phase.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001).

    Article  CAS  Google Scholar 

  25. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    Article  CAS  Google Scholar 

  26. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  Google Scholar 

  27. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends lifespan of Rb1+/− mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  Google Scholar 

  28. Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and cell division. Mol. Cell 2, 283–292 (1998).

    Article  CAS  Google Scholar 

  29. Tsai, K. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  Google Scholar 

  30. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  Google Scholar 

  31. Lukas, J. et al. Rb-dependent cell cycle inhibition by p16CDKN2A tumor suppressor. Nature 375, 503–506 (1995).

    Article  CAS  Google Scholar 

  32. Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumour-derived p16 alleles encoding proteins defective in cell cycle inhibition. Nature 375, 506–510 (1995).

    Article  CAS  Google Scholar 

  33. Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16Ink4a requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA 92, 6289–6293 (1995).

    Article  CAS  Google Scholar 

  34. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  35. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of Cdkn2a (p16INK4a) confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  Google Scholar 

  36. Sharpless, N. E. et al. Loss of p16INK4a with retention of p19ARF predisposes to tumourigenesis in mice. Nature 413, 86–91 (2001).Specific disruption of Ink4a by point mutation (Ref. 35 ) or by deletion of exon 1 (Ref. 36 ), each with retention of Arf , enables definition of the role of p16Ink4a in the mouse. Although many features initially attributed to p16Ink4a instead reflect Arf function, Ink4a does function as a tumour-suppressor gene in the mouse.

    Article  CAS  Google Scholar 

  37. Latres, E. et al. Limited overlapping roles of p15INK4b and p18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 19, 3496–3506 (2000).

    Article  CAS  Google Scholar 

  38. Herman, J. G., Jen, J., Merlo, A. & Baylin, S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4b. Cancer Res. 56, 722–727 (1996).

    CAS  PubMed  Google Scholar 

  39. Zindy, F. et al. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18Ink4c and p19Ink4d. Mol. Cell. Biol. 21, 3244–3255 (2001).

    Article  CAS  Google Scholar 

  40. Zindy, F. et al. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc. Natl Acad. Sci. USA 96, 13462–13467 (1999).

    Article  CAS  Google Scholar 

  41. Franklin, D. S., Godfrey, V. L., O'Brien, D. A., Deng, C. & Xiong, Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell. Biol. 20, 6147–6158 (2000).

    Article  CAS  Google Scholar 

  42. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  Google Scholar 

  43. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  44. Zhang, S., Ramsay, E. S. & Mock, B. A. Cdkn2a, the cyclin-dependent kinase inhibitor gene encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. Proc. Natl Acad. Sci. USA 95, 2429–2434 (1998).

    Article  CAS  Google Scholar 

  45. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  Google Scholar 

  46. Jacobs, J. J. L. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  Google Scholar 

  47. Schmitt, C. A., McCurrach, M. E., De Stanchina, E. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  Google Scholar 

  48. Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4a and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol. 2, 148–155 (2000).

    Article  CAS  Google Scholar 

  49. Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11, 2822–2834 (1997).

    Article  CAS  Google Scholar 

  50. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock. Cell 102, 407–410 (2000).

    Article  CAS  Google Scholar 

  51. Wright, W. E. & Shay, J. W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98–103 (2001).

    Article  CAS  Google Scholar 

  52. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  Google Scholar 

  53. Dannenberg, J.-H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma protein gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  Google Scholar 

  54. Peeper, D. S., Dannenberg, J.-H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 3, 198–203 (2001).References 53 and 54 show that whereas MEFs lacking Rb undergo senescence in culture, those lacking several Rb-family members seem to be immortal. Intriguingly, cells lacking Rb, p107 and p130 are resistant to growth arrest by p19Arf.

    Article  CAS  Google Scholar 

  55. Randle, D. H., Zindy, F., Sherr, C. J. & Roussel, M. F. Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages. Proc Natl Acad Sci USA, 98, 9654–9659 (2001).Like MEFs, mouse bone-marrow-derived pre-B cells that lack Arf are immortal, whereas bone-marrow-derived macrophages must also silence the Ink4a gene to become established as continuously growing cell lines.

    Article  CAS  Google Scholar 

  56. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  Google Scholar 

  57. Brenner, A. J., Stampfer, M. R. & Aldaz, C. M. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17, 199–205 (1998).

    Article  CAS  Google Scholar 

  58. Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).Growing primary human keratinocytes and mammary epithelial cells over feeder layers in defined medium can prevent induction of p16Ink4a and enable their immortalization by introducing the telomerase catalytic subunit.

    Article  CAS  Google Scholar 

  59. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  Google Scholar 

  60. De Stanchina, E. et al. E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  Google Scholar 

  61. Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumor suppressor p53 to ras. Nature 395, 125–126 (1998).

    Article  CAS  Google Scholar 

  62. Radfar, A., Unnikrishnan, I., Lee, H.-W., DePinho, R. A. & Rosenberg, N. p19Arf induces p53-dependent apoptosis during Abelson virus-mediated pre-B cell transformation. Proc. Natl Acad. Sci. USA 95, 13194–13199 (1998).

    Article  CAS  Google Scholar 

  63. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  64. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).Although Ras triggers Arf induction and thereby antagonizes Mdm2, Ras-dependent signalling through an Arf-independent pathway can lead to Mdm2 induction. In the absence of Arf , the latter pathway should dominate, making cells resistant to p53 induction following DNA damage.

    Article  CAS  Google Scholar 

  65. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  Google Scholar 

  66. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  Google Scholar 

  67. Khan, S. H., Moritsugu, J. & Wahl, G. M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc. Natl Acad. Sci. USA 97, 3266–3271 (2000).DNA damage activates p53 through both Arf -independent and Arf -dependent signalling pathways, so Arf loss affects the durability of the DNA-damage response.

    Article  CAS  Google Scholar 

  68. Kastan, M. B. & Lim, D. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  69. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role of p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001).

    Article  CAS  Google Scholar 

  70. Lin, W.-C., Lin, F.-T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).The Atm kinase phosphorylates E2f1, enhancing its activity. This indicates a novel mechanism by which ATM might induce p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  Google Scholar 

  72. Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    Article  CAS  Google Scholar 

  73. Jacobs, J. J. L. et al. Senescence bypass screen identified TBX2, which represses cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  Google Scholar 

  74. Pantoja, C. & Serrano, M. Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18, 4974–4982 (1999).

    Article  CAS  Google Scholar 

  75. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  Google Scholar 

  76. Stott, F. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  Google Scholar 

  77. Weber, J. D. et al. p53-independent functions of the p19ARF tumor suppressor. Genes Dev. 14, 2358–2365 (2000).Mice lacking Arf, Mdm2 and p53 show a broader spectrum of tumours than those lacking Mdm2 and p53 . Introduction of p19Arf into primary MEFs that lack Arf, Mdm2 and p53 induces G1 arrest, albeit slowly. Arf must interact with proteins other than Mdm2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks M. F. Roussel and B. Schulman for insightful comments on the manuscript. C. J. S. is an Investigator of Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Locuslink:

ATM

CDK2

CDK4

CDK6

cyclin D1

cyclin D2

cyclin D3

cyclin E

E2F transcription factors

HDM2

p15INK4b

p16INK4a

p18INK4c

p19INK4d

p73

INK4a

 Mouse Genome Informatics:

Bmi1

Ink4b

Ink4c

Ink4d

p19Arf

p21Cip1

p27Kip1

v-Abl

 Swiss-prot:

p53

Glossary

E2F TRANSCRIPTION FACTOR

A heterodimeric transcription factor that is composed of an E2F subunit (1–6) and either DP-1 or DP-2.

ARF

An alternative reading-frame protein of INK4a/ARF. The locus encodes p19Arf in the mouse and p14ARF in humans.

E3 UBIQUITIN PROTEIN LIGASE

The third enzyme in a series — the first two are designated E1 and E2 — that are responsible for ubiquitylation of target proteins. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

DP-1 AND DP-2

Proteins that dimerize with E2F subunits, enabling E2F–DP complexes to bind to DNA.

INK4 FAMILY

A family of genes that encode an inhibitor of CDK4. Four such genes — designated in order of discovery — are INK4a, INK4b, INK4c and INK4d. These encode polypeptides of 15–19 kDa and are designated p16INK4a, p15INK4b, p18INK4c and p19INK4d, respectively.

CIP/KIP FAMILY

A family of genes that includes p21Cip1, p27Kip1 and p57Kip2. Cip, CDK-inhibitory protein; Kip, kinase-inhibitory protein.

EXTRAMEDULLARY HAEMATOPOIESIS

Blood formation at sites outside of the bone marrow, usually in the spleen or liver.

EARLY PASSAGE

Primary cells explanted into culture, when grown and serially transferred, eventually undergo replicative arrest. Cells at early passage maintain a more robust proliferative capacity, whereas those at late passage replicate less well.

PLASMACYTOMA

A tumour mass, usually solitary, containing immunoglobulin-producing plasma cells. The presence of many such disseminated tumours, usually in bone, is called multiple myeloma.

IMMUNOGLOBULIN PROMOTER–ENHANCER

Regulatory sequences of genes that encode heavy (μ) or light (κ or λ) immunoglobulin polypeptides that assemble to form antibodies. In B-cell tumours, these regulatory sequences are translocated and fused to other genes, including the Myc oncogene.

HAPLO-INSUFFICIENCY

A state in which loss of only one of two alleles of a gene detectably disables its function.

RHABDOMYOSARCOMA

Malignant tumour arising from skeletal muscle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherr, C. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2, 731–737 (2001). https://doi.org/10.1038/35096061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing