Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of functional chimaeric mouse/human antibody

Abstract

The availability of monoclonal antibodies has revived interest in immunotherapy. The ability to influence an individual's immune state by administering immunoglobulin of the appropriate specificity may provide a powerful approach to disease control and prevention. Compared with immunoglobulin from other species, human immunoglobulin (Ig) might be best for such therapeutic intervention; it might function better with the recipient's effector cells and should itself be less immunogenic. The success of the mouse hybridoma system suggests that immunoglobulin of virtually any specificity can be obtained from a properly immunized animal. In the human system, however, immunization protocols are restricted by ethical considerations, and it is not yet clear whether human antibody-producing cell lines of the required specificity can be obtained from adventitiously immunized individuals or from in vitro immunized cells. A method which might circumvent these difficulties is to produce antibodies consisting of mouse variable regions joined to human constant regions. Therefore, we have constructed immunoglobulin genes in which the DNA segments encoding mouse variable regions specific for the hapten trinitrophenyl (TNP) are joined to segments encoding human μ and κ constant regions. These ‘chimaeric’ genes are expressed as functional TNP-binding chimaeric IgM. We report here some of the properties of this novel IgM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Köhler, G. & Milstein, C. Eur. J. Immun. 6, 511–519 (1976).

    Article  Google Scholar 

  2. Hawley, R. G., Shulman, M. J., Murialdo, H., Gibson, D. M. & Hozumi, N. Proc. natn. Acad. Sci. U.S.A. 79, 7425–7429 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Ochi, A. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6351–6355 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Rabbitts, T. H., Forster, A. & Milstein, C. P. Nucleic Acids Res. 9, 4509–4524 (1981).

    Article  CAS  Google Scholar 

  5. Hieter, P. A., Max, E. E., Seidman, J. G., Maizel, J. V. & Leder, P. Cell 22, 197–207 (1980).

    Article  CAS  Google Scholar 

  6. Southern, P. J. & Berg, P. J. molec. appl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  7. Ochi, A., Hawley, R. G., Shulman, M. J. & Hozumi, N. Nature 302, 340–342 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Schaffner, W. Proc. natn. Acad. Sci. U.S.A. 77, 2163–2167 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Sandri-Goldin, R. M., Goldin, A. L., Levine, M. & Glorioso, J. C. Molec. cell. Biol. 1, 743–752 (1981).

    Article  CAS  Google Scholar 

  10. Shulman, M. J., Wilde, C. & Kohler, G. Nature 276, 269–270 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Wigler, M. et al. Cell 16, 777–785 (1979).

    Article  CAS  Google Scholar 

  12. Rassoulzadegan, M. et al. Nature 300, 713–718 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Mulligan, R. C. & Berg, P. Proc. natn. Acad. Sci. U.S.A. 78, 2072–2076 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Shulman, M. J. et al. Can. J. Biochem. Cell Biol. 62, 217–224 (1984).

    Article  CAS  Google Scholar 

  15. Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. & Perry, H. Sequence of Proteins of Immunological Interest (NIH, Bethesda, Maryland, 1983).

    Google Scholar 

  16. Amsel, L. M. & Poljak, R. J. A. Rev. Biochem. 48, 961–997 (1979).

    Article  Google Scholar 

  17. Goding, J. & Layton, J. J. exp. Med. 144, 852–857 (1976).

    Article  CAS  Google Scholar 

  18. Neuberger, M. S. & Rajewsky, K. Proc. natn. Acad. Sci. U.S.A. 78, 1138–1142 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Oi, V. T. et al. Nature 307, 136–140 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Sharon, J. et al. Nature 309, 364–367 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Rajewsky, K. & Takemori, T. A. Rev. Immun. 1, 569 (1983).

    Article  CAS  Google Scholar 

  22. Levy, R. & Miller, R. A. A. Rev. Med. 34, 107–116 (1983).

    Article  CAS  Google Scholar 

  23. Shulman, M. J., Heusser, C., Filkin, C. & Kohler, G. Molec. cell. Biol. 2, 1033–1044 (1982).

    Article  CAS  Google Scholar 

  24. Haimovich, J. & Sela, M. J. Immun. 103, 45–55 (1969).

    CAS  PubMed  Google Scholar 

  25. Adams, M. H. Bacteriophages (Interscience, New York, 1959).

  26. Williams, C. A. & Chase, M. W. Methods in Immunology and Immunochemistry Vol. 4 (Academic, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulianne, G., Hozumi, N. & Shulman, M. Production of functional chimaeric mouse/human antibody. Nature 312, 643–646 (1984). https://doi.org/10.1038/312643a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312643a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing