Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure of a chloramphenicol acetyltransferase specified by R plasmids

Abstract

Naturally occurring isolates of chloramphenicol-resistant bacteria commonly synthesise chloramphenicol acetyltransferase (EC 2.3.28; CAT) in amounts which are sufficient to account for the resistance phenotype and often harbour plas-mids which carry the structural gene for CAT1,2. The finding of CAT in such diverse prokaryotes as Proteus mirabilis, Agrobacterium tumefaciens, Streptomyces sp., and a soil Flavobacterium has led to speculation concerning the origin and evolution of the more commonly observed CAT variants specified by plasmids in clinically important bacteria2. To provide a more solid basis for studying the evolution and spread of CAT within prokaryotes we chose to determine the complete amino acid sequence of a type I variant of CAT, the variant known to be associated with most F-like plasmids conferring chloramphenicol resistance. The sequence has been determined by combining the results obtained from manual and automated sequential degradation with those obtained by mass spectrometry of peptides generated by enzymatic digestion. The directly determined primary structure is identical with that predicted by the DNA sequence analysis3 of the chloramphenicol resistance transponson Tn9 known to specify a type I variant of chloramphenicol acetyltransferase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaw, W. V. Biochem. Soc. Trans. 2, 834 (1974).

    Article  CAS  Google Scholar 

  2. Fitton, J. E., Packman, L. C., Harford, S., Zaidenzaig, Y. & Shaw, W. V. in Microbiology—1978 (ed. Schlessinger, D.) 249–252 (American Society for Microbiology, Washington, 1978).

    Google Scholar 

  3. Alton, N. K. & Vapnek, D. Nature 282, 864–869.

  4. Shaw, W. V. J. biol. Chem, 242, 687 (1967).

    CAS  PubMed  Google Scholar 

  5. Winshell, E. & Shaw, W. V. J. Bact. 99, 1248 (1969).

    Google Scholar 

  6. Gaffney, D. F., Foster, T. J. & Shaw, W. V. J. gen. Microbiol. 109, 351 (1978).

    Article  CAS  Google Scholar 

  7. Sands, L. C. & Shaw, W. V. Antimicrob. Agents Chemother. 3, 299 (1973).

    Article  CAS  Google Scholar 

  8. Shaw, W. V. Meth. Enzy. 43, 737 (1975).

    Article  CAS  Google Scholar 

  9. Engberg, B. & Nordström, K. J. Bact. 123, 179 (1975).

    CAS  PubMed  Google Scholar 

  10. de Crombrugge, B., Pastan, I., Shaw, W. V., & Rosner, J. L. Nature new Biol. 241, 237(1973).

    Article  Google Scholar 

  11. Zaidenzaig, Y. & Shaw, W. V. FEBS Lett. 62, 266 (1976).

    Article  CAS  Google Scholar 

  12. Shaw, W. V., Sands, L. C. & Datta, N. Proc. natn. Acad. Sci. U.S.A. 69, 3049 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Morris, H. R., Williams, D. H., Midwinter, G. G. & Hartley, B. S. Biochem. J. 141, 701(1974).

    Article  CAS  Google Scholar 

  14. Hartley, B. S. Biochem. J. 119, 895 (1970).

    Article  Google Scholar 

  15. Shotton, D. M. & Hartley, B. S. Biochem. J. 131, 643 (1973).

    Article  CAS  Google Scholar 

  16. Bridgen, J., Graffeo, A., Karger, B. L. & Waterfield, M. in Instrumentation in Amino Acid Sequence Analysis, 111–146 (Academic Press, London).

  17. Fitton, J. E. & Shaw, W. V. Biochem. J. 177, 575 (1979).

    Article  CAS  Google Scholar 

  18. Dell, A. & Morris, H. R. Biochem. biophys. Res. Commun. 78, 874 (1977).

    Article  CAS  Google Scholar 

  19. Zaidenzaig, Y. & Shaw, W. V. Eur. J. Biochem. 83, 553 (1978).

    Article  CAS  Google Scholar 

  20. Liddell, J. M., Shaw, W. V. & Swan, I. D. A. J. molec. Biol. 124, 285 (1978).

    Article  CAS  Google Scholar 

  21. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 211 (1974).

    Article  CAS  Google Scholar 

  22. Rossmann, M. G., Moras, D. & Alsen, K. W. Nature 250, 194 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Gibbons, I. & Perham, R. N. Biochem. J. 116, 843 (1970).

    Article  CAS  Google Scholar 

  24. Sutcliffe, J. G. Proc. natn. Acad. Sci. U.S.A. 75, 3737 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Ambler, R. P. & Scott, G. K. Proc. natn. Acad. Sci. U.S.A. 75, 560 (1978).

    Article  Google Scholar 

  26. Marcoli, R. Iida, S. & Bickle, T. (manuscript submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, W., Packman, L., Burleigh, B. et al. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Nature 282, 870–872 (1979). https://doi.org/10.1038/282870a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282870a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing