Skip to main content
Log in

Transforming Growth Factor-β1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The present study was aimed at elucidating effects of transforming growth factor-β (TGF-β) on blood–brain barrier (BBB) functions with mouse brain capillary endothelial (MBEC4) cells.

2. The permeability coefficients of sodium fluorescein and Evans blue albumin for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were dose-dependently decreased after a 12-h exposure to TGF-β1 (0.01–10 ng/mL).

3. The present study demonstrates that TGF-β lowers the endothelial permeability and enhances the functional activity of P-gp, suggesting that cellular constituents producing TGF-β in the brain may keep the BBB functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R., and D'Amore, P. A. (1989). An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. U.S.A. 88:4544-4548.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  • Dehouck, M.-P., Jolliet-Riant, P., Brée, F., Fruchart, J.-C., Cecchelli, R., and Tillement, J.-P. (1992). Drug transfer across the blood-brain barrier: Correlation between in vitro and in vivo models. J. Neurochem. 58:1790-1797.

    Google Scholar 

  • Deli, M. A., Descamps, L., Dehouck, M.-P., Cecchelli, R., Joó, F., ábrahám, C. S., and Torpier, G. (1995). Exposure of tumor necrosis factor-α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. J. Neurosci. Res. 41:717-726.

    Google Scholar 

  • Dente, C. J., Steffes, C. P., Speyer, C., and Tyburski, J. G. (2001). Pericytes augment the capillary barrier in in vitro cocultures. J. Surg. Res. 97:85-91.

    Google Scholar 

  • Flanders, K. C., Ren, R. F., and Lippa, C. P. (1998). Transforming growth factor-βs in neurodegenerative disease. Prog. Neurobiol. 54:71-85.

    Google Scholar 

  • Fontaine, M., Elmquist, W. F., and Miller, D. W. (1996). Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci. 59:1521-1531.

    Google Scholar 

  • Halstead, J., Kemp, K., and Ignotz, R. A. (1995). Evidence for involvement of phosphatidylcholine-phospholipase C and protein kinase C in transforming growth factor-β signaling. J. Biol. Chem. 270:13600-13603.

    Google Scholar 

  • Hartsough, M. T., and Mulder, K. M. (1995). Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem. 270:7117-24.

    Google Scholar 

  • Orlidge, A., and D'Amore, P. A. (1987). Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455-1462.

    Google Scholar 

  • Ramsauer, M., Krause, D., and Dermietzel, R. (2002). Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J. 16:1274-1276.

    Google Scholar 

  • Raub, T. J. (1996). Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. 271:C495-C503.

    Google Scholar 

  • Rubin, L. L., and Staddon, J. M. (1999). The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22:11-28.

    Google Scholar 

  • Sato, Y., and Rifkin, D. B. (1989). Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecular by plasmin during co-culture. J. Cell Biol. 109:309-315.

    Google Scholar 

  • Tatsuta, T., Naito, M., Mikami, K., and Tsuruo, T. (1994). Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differ. 5:1145-1152.

    Google Scholar 

  • Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem. 267:20383-20391.

    Google Scholar 

  • Utsunomiya, Y., Hasegawa, H., Yanagisawa, K., and Fujita, S. (1997). Enhancement of mdrl gene expression by transforming growth factor-β1 in the new adriamycin-resistant human leukemia cell line ME-F2/ADM. Leukemia 11:894-895.

    Google Scholar 

  • Wang, W., Merrill, M. J., and Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am. J. Physiol. 271:C1973-C1980.

    Google Scholar 

  • Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massagué, J. (1994). Mechanism of activation of the TGF-β receptor. Nature 370:341-347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohgu, S., Yamauchi, A., Takata, F. et al. Transforming Growth Factor-β1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells. Cell Mol Neurobiol 24, 491–497 (2004). https://doi.org/10.1023/B:CEMN.0000022776.47302.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000022776.47302.ce

Navigation