Skip to main content
Log in

Myocardial Neovascularization by Adult Bone Marrow-Derived Angioblasts: Strategies for Improvement of Cardiomyocyte Function

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In the pre-natal period, hemangioblasts derived from the human ventral aorta give rise to cellular elements involved in both hematopoiesis and vasculogenesis, resulting in formation of the primitive capillary network. Endothelial precursors with phenotypic and functional characteristics of embryonic hemangioblasts are also present in human adult bone marrow, and can be used to induce infarct bed vasculogenesis and angiogenesis after experimental myocardial infarction. The neovascularization results in decreased apoptosis of hypertrophied myocytes in the peri-infarct region, long-term salvage and survival of viable myocardium, reduction in collagen deposition, and sustained improvement in cardiac function. Autologous angioblasts may also be useful in cellular therapy strategies aiming to regenerate myocardial tissue after established heart failure. It is likely that protocols using cardiomyocyte/mesenchymal stem cells will require balanced co-administration of angioblasts to provide vascular structures for supply of oxygen and nutrients to both the chronically ischemic, endogenous myocardium and to the newly-implanted cardiomyocytes. Future studies will need to address the timing, relative concentrations, source and route of delivery of each of these cellular populations in animal models of acute and chronic myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) Trial Study Group. N Engl J Med 1987;316(23):1429-1435.

  2. Mahon NG, O'Roke C, Codd MB, et al. Hospital mortality of acute myocardial infarction in the thrombolytic era. Heart 1999;81:478-482.

    PubMed  Google Scholar 

  3. Hognes JR In The Artificial Heart: Prototypes, Policies and Patients. Washingtion, DC: National Academy Press, 1991:1-312.

    Google Scholar 

  4. Annual Report of the US Scientific Registry for Organ Transplantation and the Organ Procurement and Transplantation Network, 1990. Washingtion, DC: US Department of Health and Human Services, 1990.

  5. Frazier OH, Rose EA, Macmanus Q, et al. Multicenter clinical evaluation of the Heartmate 1000 IP left ventricular assist device. Ann Thorac Surg 1992;102:578-587.

    Google Scholar 

  6. McCarthy PM, Rose EA, Macmanus Q, et al. Clinical experience with the Novacor ventricular assist system. J Thorac Cardiovasc Surg 1991;102:578-587.

    PubMed  Google Scholar 

  7. Oz MC, Argenziano M, Catanese KA, et al. Bridge experience with long-term implantable left ventricular assist devices. Are they an alternative to transplantation? Circulation 1997;95(7):1844-1852.

    PubMed  Google Scholar 

  8. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997;80(11A):15L-25L.

    PubMed  Google Scholar 

  9. Ravichandran LV, Puvanakrishnan R. In vivo labeling studies on the biosynthesis and degradation of collagen in experimental myocardial myocardial infarction. Biochem Intl 1991;24:405-414.

    Google Scholar 

  10. Agocha A, Lee H-W, Eghali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: Effects of TGF-beta, thyroid hormone, angiotensis II and basic fibroblast growth factor. J Mol Cell Cardiol 1997;29:2233-2244H.

    PubMed  Google Scholar 

  11. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991;260:H1406-H14014.

    PubMed  Google Scholar 

  12. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ. Left ventricular end systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44-51.

    PubMed  Google Scholar 

  13. Nelissen-Vrancken H, Debets J, Snoeckx L, Daemen M, Smits J. Time-related normalization of maximal coronary flow in isolated perfused hearts of rats with myocardial infarction. Circulation 1996;93:349-355.

    PubMed  Google Scholar 

  14. Kalkman EAJ, Bilgin YM, van Haren P, van Suylen R-J, Saxena PR, Schoemaker RG. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc Res 1996.

  15. Heymans S, Luutun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999;5:1135-1142.

    PubMed  Google Scholar 

  16. Hochman JS, Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 1987;75:299-306.

    PubMed  Google Scholar 

  17. White HD, Cross DB, Elliot JM, et al. Long-term prognostic importance of patency of the infarct-related coronary artery after thrombolytic therapy for myocardial infarction. Circulation 1994;89:61-67.

    PubMed  Google Scholar 

  18. Nidorf SM, Siu SC, Galambos G, Weyman AE, Picard MH. Benefit of late coronary reperfusion on ventricular morphology and function after myocardial infarction. J Am Coll Cardiol 1992;20:307-313.

    PubMed  Google Scholar 

  19. Tavian M, Coulombel L, Luton D, San Clemente H, Dieterlen-Lievre F, Peault B. Aorta-associated CD34 hematopoietic cells in the early human embryo. Blood 1996;87:67-72.

    PubMed  Google Scholar 

  20. Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998;125:4575- 4583.

    PubMed  Google Scholar 

  21. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 1997;386:488-493.

    PubMed  Google Scholar 

  22. Choi K, Kennedy M, Kazarov A, Papadimitriou, Keller G. A common precursor for hematopoietic and endothelial cells. Development 1998;125:725-732.

    PubMed  Google Scholar 

  23. Elefanty AG, Robb L, Birner R, Begley CG. Hematopoieticspecific genes are not induced during in vitro differentiation of scl-null embryonic stem cells. Blood 1997;90:1435- 1447.

    PubMed  Google Scholar 

  24. Labastie M-C, Cortes F, Romeo P-H, Dulac C, Peault B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 1998;92:3624-3635.

    PubMed  Google Scholar 

  25. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FA, Orkin SH. An early hematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994;371:221-225.

    PubMed  Google Scholar 

  26. Ogawa M, Kizumoto M, Nishikawa S, Fujimoto T, Kodama H, Nishikawa SI. Blood 1999;93:1168-1177.

    PubMed  Google Scholar 

  27. Asahara T, et al. Isolation of putative progenitor cells for endothelial angiogenesis. Science 1997;275:964-967.

    PubMed  Google Scholar 

  28. Folkman J. Therapeutic angiogenesis in ischemic limbs. Circulation 1998;97:108-110.

    PubMed  Google Scholar 

  29. Takahashi T, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434- 438.

    PubMed  Google Scholar 

  30. Kalka C, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000;97:3422-3427.

    PubMed  Google Scholar 

  31. Rafii S, Shapiro F, Rimarachin J, Nachman R, Ferris B, Weksler B, Moore AS, Asch AS. Isolation and characterization of human bone marrow microvascular endothelial cells: Hematopoietic progenitor cell adhesion. Blood 1994;84:10-19.

    PubMed  Google Scholar 

  32. Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362- 367.

    PubMed  Google Scholar 

  33. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71-77.

    PubMed  Google Scholar 

  34. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med 2001;7:430-436.

    PubMed  Google Scholar 

  35. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964-3972.

    PubMed  Google Scholar 

  36. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705.

    PubMed  Google Scholar 

  37. Tomita S, Li R-K, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II-247.

    Google Scholar 

  38. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.

    PubMed  Google Scholar 

  39. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate sitespecific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282-1286.

    PubMed  Google Scholar 

  40. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407-414.

    PubMed  Google Scholar 

  41. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701- 705.

    PubMed  Google Scholar 

  42. McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation 1998;98:2765-2773.

    PubMed  Google Scholar 

  43. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 2000;101:1130- 1137.

    PubMed  Google Scholar 

  44. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med 1992;327:669-677.

    PubMed  Google Scholar 

  45. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747-752.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu Itescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itescu, S., Kocher, A.A. & Schuster, M.D. Myocardial Neovascularization by Adult Bone Marrow-Derived Angioblasts: Strategies for Improvement of Cardiomyocyte Function. Heart Fail Rev 8, 253–258 (2003). https://doi.org/10.1023/A:1024721717926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024721717926

Keywords

Navigation