Skip to main content
Log in

Aberrant Glycolytic Metabolism of Cancer Cells: A Remarkable Coordination of Genetic, Transcriptional, Post-translational, and Mutational Events That Lead to a Critical Role for Type II Hexokinase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

For more than two-thirds of this century we have known that one of the most common and profound phenotypes of cancer cells is their propensity to utilize and catabolize glucose at high rates. This common biochemical signature of many cancers, particularly those that are poorly differentiated and proliferate rapidly, has remained until recently a “metabolic enigma.” However, with many advances in the biological sciences having been applied to this problem, cancer cells have begun to reveal their molecular strategies in maintaining an aberrant metabolic behavior. Specifically, studies performed over the past two decades in our laboratory demonstrate that hexokinase, particularly the Type II isoform, plays a critical role in initiating and maintaining the high glucose catabolic rates of rapidly growing tumors. This enzyme converts the incoming glucose to glucose-6-phosphate, the initial phosphorylated intermediate of the glycolytic pathway and an important precursor of many cellular “building blocks.” At the genetic level the tumor cell adapts metabolically by first increasing the gene copy number of Type II hexokinase. The enzyme's gene promoter, in turn, shows a wide promiscuity toward the signal transduction cascades active within tumor cells. It is activated by glucose, insulin, low oxygen “hypoxic” conditions, and phorbol esters, all of which enhance the rate of transcription. Also, the tumor cell uses the tumor suppressor p53, which is usually modified by mutations to debilitate cell cycle controls, to further activate hexokinase gene transcription. This results in both enhanced levels of the enzyme, which binds to mitochondrial porins thus gaining preferential access to mitochondrially generated ATP, and in a decreased susceptibility to product inhibition and proteolytic degradation. Significantly, these multiple strategies all work together to enable tumor cells to develop a metabolic strategy compatible with rapid proliferation and prolonged survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Pedersen, P. L. (1978). Prog. Exp. Tumor. Res. 22, 190–274.

    Google Scholar 

  2. Warburg, O. (1930). The Metabolism of Tumors, Arnold Constable, London.

    Google Scholar 

  3. Van Eys, J. (1985). Annu. Rev. Nutrition 5, 435–461.

    Google Scholar 

  4. Weinhouse, S. (1972). Cancer Res. 32, 2007–2016.

    Google Scholar 

  5. Weinhouse, S. (1982). In Molecular Interrelationships of Nutrition and Cancer (Arnott, M. S., Van Eys, J., and Wang, J. M. eds.), Raven Press, New York, pp. 167–181.

    Google Scholar 

  6. Nakashima, R. A., Paggi, M. G., and Pedersen, P. L. (1984). Cancer Res. 44, 5702–5706.

    Google Scholar 

  7. Bustamante, E., and Pedersen, P. L. (1977). Proc. Natl. Acad. Sci. USA 74, 3735–3739.

    Google Scholar 

  8. Weber, G. (1982). In Molecular Interrelationships of Nutrition and Cancer (Arnott, M. S., Van Eys, J., and Wang, J. M. eds.), Raven Press, New York, pp. 191–208.

    Google Scholar 

  9. Arora, K. K., and Pedersen, P. L. (1988). J. Biol. Chem. 263, 17422–17428.

    Google Scholar 

  10. Kikuchi, Y., Sato, S., and Sugimura, T. (1972). Cancer 30, 444–447.

    Google Scholar 

  11. Nakashima, R. A., Paggi, M. G., Scott, L. J., and Pedersen, P. L. (1988). Cancer Res. 48, 913–919.

    Google Scholar 

  12. Thelen, A. P., and Wilson, J. E. (1991). Arch. Biochem. Biophys. 286, 645–651.

    Google Scholar 

  13. Rempel, A., Bannasch, P., and Mayer, D. (1994). Biochim. Biophys. Acta 1219, 660–668.

    Google Scholar 

  14. Mathupala, S. P., Rempel, A., and Pedersen, P. L. (1995). J. Biol. Chem. 270, 16918–16925.

    Google Scholar 

  15. Herzfeld, A., and Greengard, O. (1972). Cancer Res. 32, 1826–1832.

    Google Scholar 

  16. Nakashima, R. A., Mangan, P. S., Colombini, M., and Pedersen, P. L. (1986). Biochemistry 25, 1015–1021.

    Google Scholar 

  17. Parry, D. M., and Pedersen, P. L. (1983). J. Biol. Chem. 258, 10904–10912.

    Google Scholar 

  18. Mathupala, S. P., and Pedersen, P. L. (1995). Unpublished observations.

  19. Johansson, T., Berrez, J.-M., and Nelson, B. D. (1985). Biochem. Biophys. Res. Commun. 133, 608–613.

    Google Scholar 

  20. Shinohara, Y., Ichihara, J., and Terada, H. (1991). FEBS Lett. 291, 55–57.

    Google Scholar 

  21. Wang, G. L., and Semenza, G. L. (1995). J. Biol. Chem. 270, 1230–1237.

    Google Scholar 

  22. Mathupala, S. P., Rempel, A., and Pedersen, P. L. (1996). FASEB J. 10, 2965.

    Google Scholar 

  23. Rempel, A., and Pedersen, P. L. (1995). Unpublished observations.

  24. Rempel, A., Mathupala, S. P, and Pedersen, P. L. (1996). FEBS Lett. 385, 233–237.

    Google Scholar 

  25. Mathupala, S. P., Heese, C., and Pedersen, P. L. (1997). J. Biol. Chem 272, 22776–22780.

    Google Scholar 

  26. Rempel, A., Mathupala, S. P., Griffin, C. A., Hawkins, A. L., and Pedersen, P. L. (1996). Cancer Res. 56, 2468–2471.

    Google Scholar 

  27. Dang, C. V., Lewis, B. C., Dolde, C., Dang, G., and Shim, H. (1997). J. Bioener. Biomembr., 29, 345–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathupala, S.P., Rempel, A. & Pedersen, P.L. Aberrant Glycolytic Metabolism of Cancer Cells: A Remarkable Coordination of Genetic, Transcriptional, Post-translational, and Mutational Events That Lead to a Critical Role for Type II Hexokinase. J Bioenerg Biomembr 29, 339–343 (1997). https://doi.org/10.1023/A:1022494613613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022494613613

Navigation