Skip to main content
Log in

Hexokinase Binding to Mitochondria: A Basis for Proliferative Energy Metabolism

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bessman, S.P. (1954). In Fat Metabolism (Najjar, V. A., ed.), The Johns Hopkins Press, Baltimore, p. 133.

    Google Scholar 

  2. Bessman, S. P. (1960). J. Pediatr. 56, 191.

    Google Scholar 

  3. Bessman, S. P. (1966). Am. J. Med. 40, 740.

    Google Scholar 

  4. Golshani, S. (1992). Biochem. Med. Metab. Biol. 47, 108–115.

    Google Scholar 

  5. Mohan, C., Geiger, P. J., and Bessman, S. P. (1989). Curr. Top. Cell. Regul. 30, 105–142.

    Google Scholar 

  6. Bessman, S. P. Mohan, C., and Zaidise, I. (1986). Proc. Natl. Acad. Sci. USA 83, 5067–5070.

    Google Scholar 

  7. Blachly-Dyson, E., Baldini, A. Litt, M., McCabe, E., and Forte, M. (1994). Genomics 20, 62–67.

    Google Scholar 

  8. Miller, D. S. and Sykes, D. B. (1991). J. Cell. Physiol. 147, 487–494.

    Google Scholar 

  9. Kottke, M., Adams, V. Bosch, W., Bremm, G., Brdiczka, D., Sandri, G., and Panfili, E. (1988). Biochim. Biophys. Acta 935, 87–102.

    Google Scholar 

  10. Adams, V., Bosch, W., Schlegel, J., Wallimann, T., and Brdiczka, D. (1989). Biochim Biophys Acta 981, 213–225.

    Google Scholar 

  11. Katzen, H. M. (1967). In: Advances in Enzyme Regulation (Wever, G., ed.), Pergamon Press, New York, Vol. 5, pp. 335–355.

    Google Scholar 

  12. Katzen, H. M. Soderman, D. D., and Weily, C. E. (1970). J. Biol. Chem. 245, 4081–4096.

    Google Scholar 

  13. Walters, E., and McLean, P. (1968). Biochem. J. 109, 737–741.

    Google Scholar 

  14. Borrebaek, B. (1970). Biochem. Med. 3, 485–497.

    Google Scholar 

  15. DeSchepper, P. J., Toyoda, M., and Bessman, S. P. (1965). J. Biol. Chem. 240, 1670–1674.

    Google Scholar 

  16. Gots, R. E., Gorin, F. A. and Bessman, S. P. (1972). Biochem. Biophys. Res. Commun. 49, 1249.

    Google Scholar 

  17. Rapaport, E., Plesner, P., Ullrey, D. B., and Kalckar, H. M. (1983). Carlsberg Res. Commun. 48, 317–320.

    Google Scholar 

  18. Wool, I. G., Stirewalt, W. S., Kurihara, K., Low, R. B., Bailey, P., and Oyer, D. (1968). Recent Prog. Horm Res 24, 139–213.

    Google Scholar 

  19. Rosenwald, I. B. (1996). BioEssays 18, 243–250.

    Google Scholar 

  20. Epifanova, O. I. Setkow, N. A. Polunovsky, V. A., and Terskikh, V. V. (1982). In Cell Function and Differentiation, Part A (Akoyunoglou, G. et al., ed.), Alan Liss, New York, pp. 231–242.

    Google Scholar 

  21. Hershko, A., Mamont P., Shields, R., and Tomkins, G. M. (1971). Nature New. Biol. 232, 206–211.

    Google Scholar 

  22. Rinker-Schaeffer, C. W., Austin, V., Zimmer, S., and Rhoads, R. E. (1992). J. Biol. Chem. 267, 10659–10664.

    Google Scholar 

  23. Greiner, E. F., Guppy, M., and Brand, K. (1994). J. Biol. Chem. 269, 31484–31490.

    Google Scholar 

  24. Mohan, C., and Bessman, S. P. (1986). Arch. Biochem. Biophys. 248, 190–199.

    Google Scholar 

  25. Warburg, O. (1956). Science 123, 309–314.

    Google Scholar 

  26. Crabtree, H. C. (1929). Biochem. J. 23, 536–545

    Google Scholar 

  27. Arora, K. K., and Pederson, P. L. (1988). J. Biol. Chem. 263, 17422–17428.

    Google Scholar 

  28. Eigenbrodt, E., and Glossmann, H. (1980). Trends Pharmacol. Sci. May 1980, 240–245.

  29. Cohen, P., Parker, P. J., and Woodgett, J. R. (1985). In Molecular Basis of Insulin Action (Czech, M., ed.), Plenum, New York, pp 213–233.

    Google Scholar 

  30. Pederson, P. L. (1978). Prog. Exp. Tumor Res 22, 190–274.

    Google Scholar 

  31. Chen, L. B., Weiss, M. J., Davis, S., Bleday, R. S., Wong, J. R., Song, J., Terasaki, M., Shepherd, E. L., Walker, E. S., and Steele, G. D. In Cancer Cells, Vol. 3, Growth Factors and Transformation (Feramisco, J., Ozanne, B., and Stiles, C., eds.), Cold Spring Harbor Laboratory, New York, 1985, pp. 333–343.

    Google Scholar 

  32. Antaniades, H. N., Pantazis, P., Graves, D. T., Owen, A. J., and Tempst, P. In Cancer Cells, Vol. 3, Growth Factors and Transformation (Feramisco, J., Ozanne, B., and Stiles, C., eds.), Cold Spring Harbor Laboratory, New York, 1985, pp. 145–151.

    Google Scholar 

  33. Rempel, A., Bannasch, P., and Mayer, D. (1994). Biochem. J. 303, 269–274.

    Google Scholar 

  34. Printz, R. L., Koch, S., Potter, L. R., O'Doherty, R. M., Tiesinga, J. J., Moritz, S., and Granner, D. K. (1993). J. Biol. Chem. 268, 5209–5219.

    Google Scholar 

  35. Salotra, P. T., and Singh, V. M. (1982). Arch. Biochem. Biophys. 216, 758–764.

    Google Scholar 

  36. Preller, A., and Wilson, J. (1992). Arch. Biochem. Biophys. 294, 482–492.

    Google Scholar 

  37. Goncharova, N. Y., and Zelenina, E. V. (1991). Biokhimiya 56, 913–922.

    Google Scholar 

  38. Russell, R. R., Mrus, J. M., Mormmessin, J. I., and Taegtmeyer, H. (1992). J. Clin. Invest. 90, 1972–1977.

    Google Scholar 

  39. Wilson, J. E. (1980). Curr. Top. Cell. Regul. 16, 1–54.

    Google Scholar 

  40. Arora, K. K., Filburn, C. R., and Pederson, P. (1993). J. Biol. Chem. 268, 18259–18266.

    Google Scholar 

  41. Koranyi, L. I., Tanizawa, Y., Welling, C. M., Rabin, D.U., and Permutt, M. A. (1992). Diabetes 41, 807–811.

    Google Scholar 

  42. Seino, S., Blackstone, C. D., Chan, S.J., Whittaker, J., Bell, G. I., and Steiner, D. F. (1988). Horm. Metab. Res. 20, 430–435.

    Google Scholar 

  43. Steiner, D. F., and Chan, S. J. (1988). Horm. Metab. Res. 20, 443–444.

    Google Scholar 

  44. Le Roith, D., Adamo, M., Shemer, J., Waldbillig, R., Lesniak, M. A., DePablo, F., Hart, C., and Roth, J. (1988). Horm. Metab. Res. 20, 411–420.

    Google Scholar 

  45. Chan, S. J., Kwok, S. C. M., and Steiner, D. F. (1981). Diabetes Care. 4, 4–10.

    Google Scholar 

  46. Wozniak, M., Rydzewski, B., Baker, S. P., and Raizada, M. K. (1993). Neurochem. Int. 22, 1–10.

    Google Scholar 

  47. Pal, N., and Bessman, S. P. (1988). Biochem. Biophys. Res. Commun. 154, 450–454.

    Google Scholar 

  48. Bessman, S. P., and Geiger, P. J. (1980). Curr. Top. Cell. Regul. 16, 55–86.

    Google Scholar 

  49. Chen, L. B. (1988). Annu. Rev. Cell Biol. 4, 155–181.

    Google Scholar 

  50. Krajewski, I., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W, and Reed, J. C. (1993). Cancer Res. 53, 4701–4714.

    Google Scholar 

  51. Nguyen, M., Millar, D. G. Yong, V. W., Korsmeyer, S. J., and Shore, G. C. (1993). J Biol. Chem. 268, 25265–25268.

    Google Scholar 

  52. Smets, L. A., Van den Berg, J., Acton, D., Top, B., Van Rooij, H., and Verwijs-Janssen, M. (1994). Blood 84, 1613–1619.

    Google Scholar 

  53. Richter, C. (1993). FEBS Lett. 325, 104–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golshani-Hebroni, S.G., Bessman, S.P. Hexokinase Binding to Mitochondria: A Basis for Proliferative Energy Metabolism. J Bioenerg Biomembr 29, 331–338 (1997). https://doi.org/10.1023/A:1022442629543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022442629543

Navigation