Skip to main content
Log in

Astrocytes and Stroke: Networking for Survival?

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are now known to be involved in the most integrated functions of the central nervous system. These functions are not only necessary for the normally working brain but are also critically involved in many pathological conditions, including stroke. Astrocytes may contribute to damage by propagating spreading depression or by sending proapoptotic signals to otherwise healthy tissue via gap junction channels. Astrocytes may also inhibit regeneration by participating in formation of the glial scar. On the other hand, astrocytes are important in neuronal antioxidant defense and secrete growth factors, which probably provide neuroprotection in the acute phase, as well as promoting neurogenesis and regeneration in the chronic phase after injury. A detailed understanding of the astrocytic response, as well as the timing and location of the changes, is necessary to develop effective treatment strategies for stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ameriso, S. F. and Sahai, S. 1997. Mechanisms of ischemia in in situ vascular occlusive disease.

  2. Pulsinelli, W. A., Jacewicz, M., Levy, D. E., Petito, C. K., and Plum, F. 1997. Ischemic brain injury and the therapeutic window. Ann. N. Y. Acad. Sci. 835:187–193.

    PubMed  Google Scholar 

  3. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–1568.

    PubMed  Google Scholar 

  4. Legos, J. J. 2002. Pharmacological interventions for stroke: failures and future. Expert. Opin. Investig. Drugs 11:603–614.

    PubMed  Google Scholar 

  5. Wardlaw, J. M., Warlow, C. P., and Counsell, C. 1997. Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke. Lancet 350:607–614.

    PubMed  Google Scholar 

  6. Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., Larrue, V., Bluhmki, E., Davis, S., Donnan, G., Schneider, D., Diez-Tejedor, E., and Trouillas, P. 1998. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australian Acute Stroke Study Investigators Lancet 352:1245–1251.

    Google Scholar 

  7. Kaste, M., Thomanssen, L., Grond, M., Hacke, W., Holtåas, S., Lindley, R. I., Rone, R. O., Wahlgren, N. G., and Wardlaw, J. M. 2000. Thrombolysis for acute ischemic stroke: a consensus statement of the 3rd Karolinska stroke update. Stroke 32:2717–2718.

    Google Scholar 

  8. Ringleb, P. A., Schellinger, P. D., Schranz, C., and Hacke, W. 2002. Thrombolytic therapy with 3 to 6 hours after onset of ischemic stroke. Useful or harmful? Stroke 33:1437–1441.

    PubMed  Google Scholar 

  9. Cochrane Database Syst. Rev 2002;(1):CD000197. Organised inpatient (stroke unit) care for stroke. Stroke Unit Trialists' Collaboration.

  10. Hertz, L., Yu, A. C., Kala, G., and Schousboe, A. 2000. Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem. Int. 37:83–102.

    PubMed  Google Scholar 

  11. Araque, A., Carmignoto, G., and Haydon, P. G. 2001. Dynamic signalling between astrocytes and neurons. Annu. Rev. Physiol. 63:795–813.

    PubMed  Google Scholar 

  12. Haydon, P. G. 2001. GLIA:listening and talking to the synapse. Nat. Rev. Neurosci. 2:185–193.

    PubMed  Google Scholar 

  13. Kirchhoff, F., Dringen, R., and Giaume, C. 2001. Pathways of neuron-astrocyte interactions and their possible role in neuro-protection. Eur. Arch. Psychiatry Clin. Neurosci. 251:159–169.

    PubMed  Google Scholar 

  14. Forsyth, R. J. 1996. Astrocytes and the delivery of glucose from plasma to neurons. Neurochem. Int. 28:231–241.

    PubMed  Google Scholar 

  15. Nilsson M., Hansson, E., and Rönnbäck, L. 1991. Adrenergic and 5–HT2 receptors on the same astroglial cell: A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res. Dev. Brain Res. 63:33–41.

    PubMed  Google Scholar 

  16. Nilsson M., Eriksson, P. S., Rönbbäck, L., and Hansson, E. 1993. GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614.

    PubMed  Google Scholar 

  17. Verkhratsky, A. and Kettenmann, H. 1996. Calcium signalling in glial cells. Trends Neurosci. 19:346–352.

    PubMed  Google Scholar 

  18. Porter, J. T. and McCarthy, K. D. (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51: 439–455.

    PubMed  Google Scholar 

  19. Ventura, R. and Harris, K. M. 1999. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19:6897–6906.

    PubMed  Google Scholar 

  20. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T. and Volterra, A. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.

    PubMed  Google Scholar 

  21. Duffy, S. and MacVicar, B. A. 1995. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15:5535–5550.

    PubMed  Google Scholar 

  22. Shelton, M. K. and McCarthy, K. D. 2000. Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J. Neurochem. 74:555–563.

    PubMed  Google Scholar 

  23. Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M. 1998. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1:683–692.

    PubMed  Google Scholar 

  24. Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P. G. 1994. Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747.

    PubMed  Google Scholar 

  25. Muyderman, H., Angehagen, M., Sandberg, M., Bjorklund, U., Olsson, T., Hansson, E., and Nilsson, M. 2001. Alpha 1–adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release in astrocytes. J. Biol. Chem. 276:46504–46514.

    PubMed  Google Scholar 

  26. Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G. 1998. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10:2129–2142.

    PubMed  Google Scholar 

  27. Rouach, N., Avignone, E., Meme, W., Koulakoff, A., Venance, L., Blomstrand, F., and Giaume, C. 2002. Gap junctions and connexin expression in the central nervous system. Biol. Cell. In press.

  28. Tabernero, A., Giaume, C., and Medina, J. M. 1996. Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16:187–195.

    PubMed  Google Scholar 

  29. Charles, A. and Giaume, C. 2002. Intercellular calcium waves in astrocytes: underlying mechanisms and functional significance. Page 110–126, in Volterra, A., Haydon, P., and Magistretti, P. (eds), In Tripartite Synapses: Synaptic Transmission with Glia, Oxford University Press, London.

    Google Scholar 

  30. Enkvist, M. O. and McCarthy, K. D. 1994. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62:489–495.

    PubMed  Google Scholar 

  31. Blomstrand, F., Khatibi, S., Muyderman, H., Hansson, E., Olsson, T., and Ronnback, L. 1999. 5–Hydroxytryptamine and glutamate modulate velocity and extent of intercellular calcium signalling in hippocampal astroglial cells in primary cultures. Neuroscience 88:1241–1253.

    PubMed  Google Scholar 

  32. Lipton, P. 1999. Ischemic cell death in brain neurons. 79: 1431–1568.

    Google Scholar 

  33. Folbergrová, J., Memezawa, H., Smith, M.-L., and Siesjö, B. K. 1992. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo-and hyperglycemic rats. J. Cereb. Blood Flow Metab. 12:25–33.

    PubMed  Google Scholar 

  34. Kuroda, S., Katsura, K.-I., Tsuchidate, R., and Siesjö, B. K. 1996. Secondary bioenergetic failure after transient focal ischemia is due to mitochondrial injury. Acta Physiol. Scand. 156:149–150.

    PubMed  Google Scholar 

  35. Anderson, M. F. and Sims, N. R. 1999. Mitochondrial respiratory function and cell death in focal cerebral ischaemia. J. Neurochem. 73:1189–1199.

    PubMed  Google Scholar 

  36. Sims, N. R. and Zaidan, E. 1995. Biochemical changes associated with selective neuronal death following short-term cerebral ischemia. Int. J. Biochem. Cell Biol. 27:531–550.

    PubMed  Google Scholar 

  37. Hossmann, K.-A. 1994. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36:557–565.

    PubMed  Google Scholar 

  38. Kaplan, B., Brint, S., Tanabe, J., Jacewicz, M., Wang, X.-J., and Pulsinelli, W. A. 1991. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:1032–1039.

    PubMed  Google Scholar 

  39. Buchan, A. M., Xue, D., and Slivka, A. 1992. A new model of temporary focal neocortical ischemia in the rat. Stroke 23: 273–279.

    PubMed  Google Scholar 

  40. Memezawa, H., Smith, M.-L., and Siesjö, B. K. 1992. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559.

    PubMed  Google Scholar 

  41. Garcia, J. H., Liu, K.-F., and Ho, K.-L. 1995. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26:636–642.

    PubMed  Google Scholar 

  42. Li, Y., Chopp, M., Jiang, N., Zhang, Z. G., and Zaloga, C. 1995. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26:1252–1257.

    PubMed  Google Scholar 

  43. Markgraf, C. G., Velayo, N. L., Johnson, M. P., McCarty, D. R., Medhi, S., Koehl, J. R., Chmielewski, P. A., and Linnik, M. D. 1998. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29:152–158.

    PubMed  Google Scholar 

  44. Yoshimoto, T. and Siesjö, B. K. 1999. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839:283–291.

    PubMed  Google Scholar 

  45. Marrif, H. and Juurlink, B. H. 1999. Astrocytes respond to hypoxia by increasing glycolytic capacity. J. Neurosci. Res. 57: 255–260.

    PubMed  Google Scholar 

  46. Garcia, J. H., Yoshida, Y., Chen, H., Li, Y., Zhang, Z. G., Lian, J., Chen, S., and Chopp, M. 1993. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am. J. Pathol. 142:623–635.

    PubMed  Google Scholar 

  47. Liu, D., Smith, C. L., Barone, F. C., Ellison, J. A., Lysko, P. G., Li, K., and Simpson, I. A. 1999. Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Mol. Brain Res. 68:29–41.

    PubMed  Google Scholar 

  48. Hagberg, A., Qu, H., Saether, O., Unsgard, G., Haraldseth, O., and Sonnewald, U. 2001. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: The role of astrocytes in neuronal survival. J. Cereb. Blood Flow Metab. 21:1451–1463.

    PubMed  Google Scholar 

  49. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10: 1583–1591.

    PubMed  Google Scholar 

  50. Landis, D. M. 1994. The early reactions of non-neuronal cells to brain injury. Annu. Rev. Neurosci. 17:133–151.

    PubMed  Google Scholar 

  51. Aschner, M. 1998. Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction—a forum position paper. Neurotoxicology 19:7–17.

    PubMed  Google Scholar 

  52. Kimelberg, H. C. 2000. Cell volume in the CNS: Regulation and implication for central nervous system pathology. Neuroscientist 6:13–24.

    Google Scholar 

  53. Syková, E. 2001. Glial diffusion barriers during aging and pathological states. Prog. Brain Res. 132:339–363.

    PubMed  Google Scholar 

  54. Ayata, C. and Ropper, A. H. 2002. Ischemic brain oedema. J. Clin. Neurosci. 9:113–124.

    PubMed  Google Scholar 

  55. Syková, E. 1997. The extracellular space in the CNS: its regulation, volume and geometry in normal and pathological neuronal function. Neuroscientist 3:28–41.

    Google Scholar 

  56. Takahashi, K., Greenberg, J. H., Jackson, P., Maclin, K., and Zhang, J. 1997. Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 17:1137–1142.

    PubMed  Google Scholar 

  57. Hudspith, M. J. 1997. Glutamate: a role in normal brain function, anaesthesia, analgesia and CNS injury. Br. J. Anaesth. 78:731–747.

    PubMed  Google Scholar 

  58. Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C., and Kater, S. B. 1999. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19:520–528.

    PubMed  Google Scholar 

  59. Innocenti, B., Parpura, V., and Haydon, P. G. 2000. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20:1800–1808.

    PubMed  Google Scholar 

  60. Martínez, A. D. and Sáez, J. C. 2000. Regulation of astrocytes gap junctions by hypoxia-reoxygenation. Brain Res. Rev. 32:250–258.

    PubMed  Google Scholar 

  61. Cotrina, M. L., Kang, J., Lin, J. H., Bueno, E., Hansen, T. W., He, L., Liu, Y., and Nedergaard M. 1998. Astrocytic gap junctions remain open during ischemic conditions. J. Neurosci. 18:2520–2537.

    PubMed  Google Scholar 

  62. Lin, J. H., Weigel, H., Cotrina, M. L., Liu, S., Bueno, E., Hansen, A. J., Hansen, T. W., Goldman, S., and Nedergaard, M. 1998. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1:494–500.

    PubMed  Google Scholar 

  63. Li, Y., Chopp, M., Jiang, N., Yao, F., and Zaloga, C. 1995. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 15:389–397.

    PubMed  Google Scholar 

  64. Li, Y., Chopp, M., Jiang, N., and Zaloga, C. 1995. In situ detection of DNA fragmentation after focal cerebral ischemia in mice. Mol. Brain Res. 28:164–168.

    PubMed  Google Scholar 

  65. Budd, S. L. and Lipton, S. A. 1998. Calcium tsunamis: do astrocytes transmit cell death messages via gap junctions during ischemia? Nat. Neurosci. 1:431–432.

    PubMed  Google Scholar 

  66. Rami, A., Volkmann, T., and Winckler, J. 2001. Effective reduction of neuronal death by inhibiting gap junctional intercellular communication in a rodent model of global transient cerebral ischemia. Exp. Neurol. 170:297–304.

    PubMed  Google Scholar 

  67. Rawanduzy, A., Hansen, A., Hansen, T. W., and Nedergaard, M. 1997. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J. Neurosurg. 87:916–920.

    PubMed  Google Scholar 

  68. Saito, R., Graf, R., Hubel, K., Fujita, T., Rosner, G., and Heiss, W. D. 1997. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarisations. J. Cereb. Blood Flow Metab. 17:857–864.

    PubMed  Google Scholar 

  69. Siushansian, R., Bechberger, J. F., Cechetto, D. F., Hachinski, V. C., and Naus, C. C. 2001. Connexin43 null mutation increases infarct size after stroke. J. Comp. Neurol. 440:387–394.

    PubMed  Google Scholar 

  70. Blanc, E. M., Bruce-Keller, A. J., and Mattson, M. P. 1998. Astrocytic gap junction communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J. Neurochem. 70:958–970.

    PubMed  Google Scholar 

  71. Nedergaard, M. and Astrup, J. 1986. Infarct rim: effect of hyperglycemia on direct current potential and [14C]2–deoxyglucose phosphorylation. J. Cereb. Blood Flow Metab. 6:607–615.

    PubMed  Google Scholar 

  72. Gill, R., Nordholm, L., and Lodge, D. 1992. The neuroprotective actions of 2,3–dihydroxy-6–nitro-7–sulfamoyl-benzo(F)quinozaline (NBQX) in a rat focal ischaemic model. Brain Res. 580: 35–43.

    PubMed  Google Scholar 

  73. Nedergaard, M. and Hansen, A. J. 1998. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res. 449:395–398.

    Google Scholar 

  74. Iijima, T., Mies, G., and Hossmann, K. A. 1992. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J. Cereb. Blood Flow Metab. 12:727–733.

    PubMed  Google Scholar 

  75. Chen, Q., Chopp, M., Bodzin, G., and Chen, H. 1993. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: Correlation with ischemic injury. J. Cereb. Blood Flow Metab. 13:389–394.

    PubMed  Google Scholar 

  76. Mies, G. 1993. Inhibition of protein synthesis during repetitive cortical spreading depression. J. Neurochem. 60:360–363.

    PubMed  Google Scholar 

  77. Busch, E., Gyngell, M. L., Eis, M., Hoehn-Berlage, M., and Hossmann, K. A. 1996. Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J. Cereb. Blood Flow Metab. 16:1090–1099.

    PubMed  Google Scholar 

  78. Takano, K., Latour, L. L., Formato, J. E., Carano, R. A., Helmer, K. G., Hasegawa, Y., Sotak, C. H., and Fisher, M. 1996. The role of spreading depression in focal ischemia evaluated by diffusion mapping. Ann. Neurol. 39:308–318.

    PubMed  Google Scholar 

  79. Martins-Ferreira, H., Nedergaard, M., and Nicholson, C. 2000. Perspectives on spreading depression. Brain Res. Rev. 32:215–234.

    PubMed  Google Scholar 

  80. Basarsky, T. A., Duffy, S. N., Andrew, R. D., and MacVicar, B. A. 1998. Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci. 18: 7189–7199.

    PubMed  Google Scholar 

  81. Kunkler, P. E. and Kraig, R. P. 1998. Calcium waves preceed electrophysiological changes of spreading depression in hippocampal cultures. J. Neurosci. 18:3416–3425.

    PubMed  Google Scholar 

  82. Sugaya, E., Takato, M., and Noda, Y. 1975. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J. Neurophysiol. 38:822–841.

    PubMed  Google Scholar 

  83. Largo, C., Cuevas, P., and Herreras, O. 1996. Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Neurol. Res. 18:445–448.

    PubMed  Google Scholar 

  84. Floyd, R. A. 1999. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. 222:236–245.

    PubMed  Google Scholar 

  85. Bains, J. S. and Shaw, C. A. 1997. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 25:335–358.

    PubMed  Google Scholar 

  86. Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. 2000. Glutathione, oxidative stress and neurodegeneration Eur. J. Biochem. 267:4904–4911.

    PubMed  Google Scholar 

  87. Chan, P. H. 1996. Role of oxidants in ischemic brain damage. Stroke 27:1124–1129.

    PubMed  Google Scholar 

  88. Piantadosi, C. A. and Zhang, J. 1996. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–331.

    PubMed  Google Scholar 

  89. Kuroda, S. and Siesjö, B. K. 1997. Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4:199–212.

    PubMed  Google Scholar 

  90. Nowicki, J. P., Duval, D., Poignet, H., and Scatton, B. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmacol. 204:339–340.

    PubMed  Google Scholar 

  91. Ranjan, A., Theodore, D., Haran, R. P., and Chandy, M. J. 1993. Ascorbic acid and focal cerebral ischaemia in a primate model. Acta Neurochir. (Wien.) 123:87–91.

    Google Scholar 

  92. Dawson, D. A., Graham, D. I., McCulloch, J., and Macrae, I. M. 1994. Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a N-methyl-D-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia. Br. J. Pharmacol. 113:247–253.

    PubMed  Google Scholar 

  93. Baker, K., Marcus, C. B., Huffman, K., Kruk, H., Malfroy, B., and Doctrow, S. R. 1998. Synthetic combined superoxide dismutase catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J. Pharm. Exp. Ther. 284:215–221.

    Google Scholar 

  94. Fukuyama, N., Takizawa, S., Ishida, H., Hoshiai, K, Shinohara, Y., and Nakazawa, H. 1998. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J. Cerebr. Blood Flow Metab. 18:123–129.

    Google Scholar 

  95. Heales, S. J. R., Bolaños, J. P., Stewart V. C., Brookes, P. S., Land, J. M., and Clark, J. B. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta 1410:215–228.

    PubMed  Google Scholar 

  96. Dringen, R. 2000. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62:649–671.

    PubMed  Google Scholar 

  97. Dringen, R., Pfeiffer, B., and Hamprecht, B. 2002. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19:562–569.

    Google Scholar 

  98. Iwata-Ichikawa, E., Kondo, Y., Miyazaki, I., Asanuma, M., and Ogawa, N. 1999. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J. Neurochem. 72:2334–2344.

    PubMed  Google Scholar 

  99. Chen, Y., Vartiainen, N. E., Ying, W., Chan, P. H., Koistinaho, J., and Swanson, R. A. 2001. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77:1601–1610.

    PubMed  Google Scholar 

  100. Wallin, C., Puka-Sundvall, M., Hagberg, H., Weber, S. G., and Sandberg, M. 2000. Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. Dev. Brain Res. 125:51–60.

    Google Scholar 

  101. Uemura, Y., Miller, J. M., Matson, W. R., and Beal, M. F. 1991. Neurochemical analysis of focal ischemia in rats. Stroke 22: 1548–1553.

    PubMed  Google Scholar 

  102. Gotoh, O., Yamamoto, M., Tamura, A., and Sano, K. 1994. Effect of YM737, a new glutathione analogue, on ischemic brain edema. Acta Neurochir. Suppl. 60, 318–320.

    Google Scholar 

  103. Anderson, M. F. and Sims, N. R. 2002. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J. Neurochem. 81:541–549.

    PubMed  Google Scholar 

  104. Mizui, T., Kinouchi, H., and Chan, P. H. 1992. Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats. Am. J. Physiol. 262:H313–H317.

    PubMed  Google Scholar 

  105. Fernández-Checa, J. C., García-Ruiz, C., Ookhtens, M., and Kaplowitz, N. 1991. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J. Clin. Invest. 87:397–405.

    PubMed  Google Scholar 

  106. García-Ruiz, C., Morales, A., Ballesta, A., Rodes, J., Kaplowitz, N., and Fernández-Checa, J. C. 1994. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J. Clin. Invest. 94:193–201.

    PubMed  Google Scholar 

  107. Collel, A., García-Ruiz, C., Miranda, M., Ardite, E., Mári, M., Morales, A., Corrales, F., Kaplowitz, N., and Fernández-Checa, J. C. 1998. Selective glutathione depletion of mitochondria by ethanol sensitises hepatocytes to tumour necrosis factor. Gastroenterology 115:1541–1551.

    PubMed  Google Scholar 

  108. Wüllner, U., Seyfried, J., Groscurth, P., Beinroth, S., Gleichmann, M., Heneka, M., Löschmann, P. A., Schulz, J. B., Weller, M., and Klockgether, T. 1999. Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 826:53–62.

    PubMed  Google Scholar 

  109. Schallert, T., Leasure, J. L., and Kolb, B. 2000. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J. Cereb. Blood Flow Metab. 20:1513–1528.

    PubMed  Google Scholar 

  110. Dahlqvist, P., Zhao, L., Johansson, I. M., Mattsson, B., Johansson, B. B., Seckl, J. R., and Olsson, T. 1999. Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neuroscience 93:527–535.

    PubMed  Google Scholar 

  111. Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., and Weiller, C. 2000. Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216.

    PubMed  Google Scholar 

  112. Johansson, B. B. and Belichenko, P. V. 2002. Neuronal plasticity and dentritic spines: effect of environmental enrichment on intact and postischemic rat brain. J. Cereb. Blood Flow Metab. 22:89–96.

    PubMed  Google Scholar 

  113. Komitova, M., Perfilieva, E., Mattsson, B., Eriksson, P. S., and Johansson, B. B. 2002. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J. Cereb. Blood Flow Metab. 22:852–860.

    PubMed  Google Scholar 

  114. Ridet, J. L., Malhotra, S. K., Privat, A., and Gage, F. H. 1997. Reactive astrocytes: cellular and molecular cues to biological functions. Trends Neurosci. 20:570–577.

    PubMed  Google Scholar 

  115. Little, A. R. and O'Callaghan, J. P. 2001. Astrogliosis in the adult and developing CNS: is there are role for proinflammatory cytokines. NeuroToxicology 22:607–618.

    PubMed  Google Scholar 

  116. Clarke, S. R., Shetty, A. K., Bradley, J. L., and Turner, D. A. 1994. Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport 5:1885–1888.

    PubMed  Google Scholar 

  117. Eng, L. F. and Ghirnikar, R. S. 1994. GFAP and astrogliosis. Brain Pathol. 4:229–237.

    PubMed  Google Scholar 

  118. Holmin, S., Almqvist, P., Lendahl, U., and Mathiesen, T. 1997. Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur. J. Neurosci. 9:65–75.

    PubMed  Google Scholar 

  119. Pixley, S. K. and De Vellis, J. 1984. Transition between radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 15:201–209.

    Google Scholar 

  120. Lendahl, V., Zimmerman, L. B., and McKay, R. D. G. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595.

    PubMed  Google Scholar 

  121. Sancho-Tello, M., Vallés, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C. 1995. Developmental pattern of GFAP and vimentin expression in rat brain and radial glial cultures. Glia 15:157–166.

    PubMed  Google Scholar 

  122. Kajihara, H., Tsutsumi, E., Kinoshita, A., Nakano, J., Takagi, K., and Takeo, S. 2001. Activated astrocytes with glycogen accumulation in ischemic penumbra during the early stage of brain infarction: immunohistochemical and electron microscopic studies. Brain Res. 909:92–101.

    PubMed  Google Scholar 

  123. Cramer, S. C. and Chopp, M. 2000. Recovery recapitulates ontogeny. Trends Neurosci. 23:265–271.

    PubMed  Google Scholar 

  124. Luskin, M. B. 1993. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain sub-ventricular zone. Neuron 11:173–189.

    PubMed  Google Scholar 

  125. Lois, C. and Alvarez-Buylla, A. 1994. Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.

    PubMed  Google Scholar 

  126. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg C., and Gage, F. H. 1998. Neurogenesis in the adult human hippocampus. Nature Med. 11:1313–1317.

    Google Scholar 

  127. Arvidsson, A., Kokaia, Z., and Lindvall, O. 2001. N-Methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur. J. Neurosci. 14:10–18.

    PubMed  Google Scholar 

  128. Jiang, W., Gu, W., Brännström, T., Rosqvist R., and Wester, P. 2001. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 32:1201–1207.

    PubMed  Google Scholar 

  129. Jin, K, Minami, M., Lan, J. Q., Mao, X. O., Batteur, S., Simon, R. P., and Greenberg, D. A. 2001. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA 98: 4710–4715.

    PubMed  Google Scholar 

  130. Kee, N. J., Preston, E., and Wojtowicz, J. M. 2001. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp. Brain Res. 136:313–320.

    PubMed  Google Scholar 

  131. Zhang, R. L., Zhang, Z. G., Zhang, L., and Chopp, M. 2001. Proliferation and differentiation of progenitor cells in the cortex and subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33–41.

    PubMed  Google Scholar 

  132. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., and Gage, F. H. 1999. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cell from diverse regions of adult CNS. J. Neurosci. 19:8487–8497.

    PubMed  Google Scholar 

  133. Palmer, T. D., Ray, J., and Gage, F. H. 1995. Fibroblast growth factor-2 responsive neuronal progenitors reside in proliferating and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6:474–486.

    PubMed  Google Scholar 

  134. Gu, W., Brännström, T., and Wester, P. 2000. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J. Cereb. Blood Flow Metab. 20:1166–1173.

    PubMed  Google Scholar 

  135. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J., and Gage, F. H. 1997. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17:5820–5829.

    PubMed  Google Scholar 

  136. Åberg, A. I., Åberg, D., Hedbäcker, H., Oscarsson, J., and Eriksson, P. S. 2000. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20:2896–2903.

    PubMed  Google Scholar 

  137. Lim, D. A. and Alvarez-Buylla, A. 1999. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. USA 96:7526–7531.

    PubMed  Google Scholar 

  138. Song, H.-J., Stevens, C. F., and Gage, F. H. 2002. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nature Neurosci. 5:438–445.

    PubMed  Google Scholar 

  139. Alonso, G. 2001. Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia 34:253–266.

    PubMed  Google Scholar 

  140. Song, H., Stevens, C. F., and Gage, F. H. 2002. Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44.

    PubMed  Google Scholar 

  141. Doetsch, F., García-Verdugo, J. M., and Alvarez-Buylla, A. 1997. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17:5046–5061.

    PubMed  Google Scholar 

  142. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. 1999. Subventricular zone astrocytes are neuronal stem cells in the adult mammalian brian. Cell 97:703–716.

    PubMed  Google Scholar 

  143. Seri, B., García-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. 2001. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21:7153–7160.

    PubMed  Google Scholar 

  144. Alvarez-Buylla, A., Seri, B., and Doetsch, F. 2002. Identification of neural stem cells in the adult vertebrate brain. Brain Res. Rev. 57:751–758.

    Google Scholar 

  145. Åberg, M. A. I., Hellgren, G., Lindell, K., Rosengren, L., MacLennan, A. J., Carlsson, B., and Eriksson, P. S. 2001. CNTF induces gliogenesis via the JAK-STAT-Tis11 signaling pathway in adult CNS progenitor cells. Mol. Cell Neurosci. 17: 426–443.

    PubMed  Google Scholar 

  146. Lin, T.-N., Wang, P. Y., Chi, S. I., and Kuo, J. S. 1998. Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha (CNTFR alpha) expression following focal cerebral ischemia. Mol. Brain Res. 55:71–80.

    PubMed  Google Scholar 

  147. Fawcett, J. W. and Asher R. A. 1999. The glial scar and central nervous system repair. Brain Res. Bull. 49:377–391.

    PubMed  Google Scholar 

  148. McGraw, J., Hiebert, G. W., and Steeves, J. D. 2001. Modulating astrogliosis after neurotrauma. J. Neurosci. Res. 63: 109–115.

    PubMed  Google Scholar 

  149. Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C. H., and Frisen, J. 1999. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145:503–514.

    PubMed  Google Scholar 

  150. Menet, V., Gimenez, Y. R., Sandillon, F., and Privat, A. 2000. GFAP null astrocytes are a favourable substrate for neuronal survival and neurite growth. Glia 31:267–272.

    PubMed  Google Scholar 

  151. Costa, S., Planchenault, T., Charriere-Bertrand, C., Mouchel, Y., Fages, C., Juliano, S., Lefrancois, T., Barlovatz-Meimon, G., and Tardy, M. 2002. Astroglial permissivity for neurite outgrowth in neuron-astrocyte cocultures depends on regulation of laminin bioavailability. Glia 37:105–113.

    PubMed  Google Scholar 

  152. Hamberger, A. and Hyden, H. 1963. Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J. Cell Biol. 6:521–525.

    Google Scholar 

  153. Blomstrand, C., Hallen, O., Hamberger, A., and Jarlstedt, J. 1966. Quantitative cytochemical aspects on the mechanism of central compensation after unilateral vestibular neurotomy. Acta Otolaryngol. 61:113–120.

    PubMed  Google Scholar 

  154. Blomstrand, C., Hallen, O., Hamberger, A., and Jarlstedt, J. 1966. Effects of unilateral warm and cold water irrigation in the outer ear of rabbits on isolated nerve cells from the lateral vestibular nucleus and cerebellum. Acta Otolaryngol. 61:527–535.

    PubMed  Google Scholar 

  155. Blomstrand, C., Hallen, O., Hamberger, A., and Jarlstedt, J. 1970. Effect of cerebellectomy upon the cytochemistry of neurons in the lateral vestibular nucleus 3. Cytochemical response to unilateral vestibular stimulation after midline section of the brain stem. Brain Res. 19:427–432.

    PubMed  Google Scholar 

  156. Blomstrand, C. and Hamberger, A. 1969. Protein turnover in cell-enriched fractions from rabbit brain. J. Neurochem. 16:1401–1407.

    PubMed  Google Scholar 

  157. Blomstrand, C. and Hamberger, A. 1970. Amino acid incorporation in vitro into protein of neuronal and glial cell-enriched fractions. J. Neurochem. 17:1187–1195.

    PubMed  Google Scholar 

  158. Henn, F. A. and Hamberger, A. 1971. Glial cell function: uptake of transmitter substances. Proc Natl. Acad. Sci. USA 68:2686–2690.

    PubMed  Google Scholar 

  159. Blomstrand, C. 1970. Effect of hypoxia on protein metabolism in neuron-and neuroglia cell-enriched fractions from rabbit brain. Exp. Neurol. 29:175–188.

    PubMed  Google Scholar 

  160. Cochrane Database Syst. Rev 2002;(1):CD000197. Organised inpatient (stroke unit) care for stroke. Stroke Unit Trialists' Collaboration.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nilsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, M.F., Blomstrand, F., Blomstrand, C. et al. Astrocytes and Stroke: Networking for Survival?. Neurochem Res 28, 293–305 (2003). https://doi.org/10.1023/A:1022385402197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022385402197

Navigation