Skip to main content
Log in

Advanced Transgenic and Gene-Targeting Approaches

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Over the past two decades the techniques associated with the manipulation of the mouse genome have provided a powerful approach toward the better understanding of gene function. Conventional transgenie and gene targeting approaches have been used extensively, and these techniques have been particularly rewarding for neuroscientists. Nevertheless, the traditional approaches toward genome manipulation have certain limitations that diminish their usefulness for studying more sophisticated biological processes. Therefore, variations to these techniques have recently been developed. The improvements are focused on two areas: one provides regulated control of transgene expression using an inducible expression system; and the other provides the opportunity to inactivate genes in specific cells and at predetermined developmental stages with a conditional gene targeting system. This review summarizes the advantages as well as some of the technical difficulties of these new approaches. The application of these advanced approaches in biomedical research, particularly neuroscience, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Capecchi, M. R. 1989. Altering the genome by homologous recombination. Science 244:1288-1292.

    Google Scholar 

  2. Smithies, O. 1993. Animal models of human genetic diseases. Trends Genet. 9:112-116.

    PubMed  Google Scholar 

  3. Popko, B. 1999. An overview of mouse models in neuroscience research. Advances in Neurochemistry. Vol. 9, Pages 1-23, in Popko, B. (ed.), Mouse Models in the Study of Genetic Neurological Disorders, Klumer Academic/Plenum Publishers, New York.

    Google Scholar 

  4. Bruijn, L. I., and Cleveland, D. W. 1996. Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. Neuropathol. Appl. Neurobiol. 22:373-387.

    PubMed  Google Scholar 

  5. Huang, T. T., Yasunami, M., Carlson, E. J., Gillespie, A. M., Reaume, A. G., Hoffman, E. K., Chan, P. H., Scott, R. W., and Epstein, C. J. 1997. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochem. Biophys. 344:424-432.

    PubMed  Google Scholar 

  6. Copp, A. J. 1995. Death before birth: clues from gene knockouts and mutations. Trends Genet. 11:87-93.

    PubMed  Google Scholar 

  7. Thomas, J. H. 1993. Thinking about genetic redundancy. Trends Genet. 9:395-409.

    PubMed  Google Scholar 

  8. Gingrich, J. R., and Roder, J. 1998. Inducible gene expression in the nervous system of transgenic mice. Annu. Rev. Neurosci. 21:377-405.

    PubMed  Google Scholar 

  9. Saez, E., No, D., West, A., and Evans, R. M. 1997. Inducible gene expression in mammalian cells and transgenic mice. Curr. Opin. Biotechnol. 8:608-616.

    PubMed  Google Scholar 

  10. Kothary, R., Clapoff, S., Darling, S., Perry, M. D., Moran, L. A., and Rossant, J. 1989. Inducible expression of an hsp68-1acZ hybrid gene in transgenic mice. Development 105:707-714.

    PubMed  Google Scholar 

  11. Filmus, J., Remani, J., and Klein, M. H. 1992. Synergistic induction of promoters containing metal-and glucocorticoid-responsive elements. Nucleic Acids Res. 20:2755-2760.

    PubMed  Google Scholar 

  12. Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky. K. 1995. Inducible gene targeting in mice. Science 269:1427-1429.

    Google Scholar 

  13. Arnheiter, H., Skuntz, S., Noteborn, M., Chang, S., and Meier, E. 1990. Transgenic mice with intracellular immunity to influenza virus. Cell 62:51-61.

    PubMed  Google Scholar 

  14. Popko, B., Corbin, J. G., Baerwald, K. D., Dupree, J., and Garcia, A. M. 1997. The effects of interferon-gamma on the central nervous system. Mol. Neurobiol. 14:19-35.

    PubMed  Google Scholar 

  15. No, D., Yao, T. P., and Evans, R. M. 1996. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93:3346-3351.

    PubMed  Google Scholar 

  16. Yao, T. P., Segraves, W. A., Oro, A. E., McKeown, M., and Evans, R. M. 1992. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71:63-72.

    PubMed  Google Scholar 

  17. Suhr, S. T., Gil, E. B., Senut, M. C., and Gage, F. H. 1998. High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor. Proc. Natl. Acad. Sci. USA 95:7999-8004.

    PubMed  Google Scholar 

  18. Burcin, M. M., O'Malley, B. W., and Tsai, S. Y. 1998. A regulatory system for target gene expression. Front Biosci. 3:1-7.

    Google Scholar 

  19. Wang, Y., DeMayo, F. J., Tsai, S. Y., and O'Malley, B. W. 1997. Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnol. 15:239-243.

    Google Scholar 

  20. Gossen, M., and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547-5551.

    PubMed  Google Scholar 

  21. Furth, P. A., St.-Onge, L., Boger, H., Gruss, P., Gossen, M., Kistner, A., Bujard, H., and Hennighausen, L. 1994. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91:9302-9306.

    PubMed  Google Scholar 

  22. Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H., and Bujard, H. 1996. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93:10933-10938.

    PubMed  Google Scholar 

  23. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766-1769.

    Google Scholar 

  24. Yu, Z., Redfern, C. S., and Fishman, G. I. 1996. Conditional transgene expression in the heart. Circ. Res. 79:691-697.

    PubMed  Google Scholar 

  25. Ray, P., Tang, W., Wang, P., Homer, R., Kuhn, C. 3rd., Flavell, R. A., and Elias, J. A. 1997. Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and-independent phenotypes. J. Clin. Invest. 100:2501-2511.

    PubMed  Google Scholar 

  26. Tremblay, P., Meiner, Z., Galou, M., Heinrich, C., Petromilli, C., Lisse, T., Cayetano, J., Torchia, M., Mobley, W., Bujard, H., DeArmond, S. J., and Prusiner, S. B. 1998. Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc. Natl. Acad. Sci. USA 95:12580-12585.

    PubMed  Google Scholar 

  27. Yrjanheikki, J., Keinanen, R., Pellikka, M., Hokfelt, T., and Koistinaho, J. 1998. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci. USA 95:15769-15774.

    PubMed  Google Scholar 

  28. Baron, U., Gossen, M., and Bujard, H. 1997. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25:2723-2729.

    PubMed  Google Scholar 

  29. Mayford, M., Bach, M. E., Huang, Y. Y., Wang, L., Hawkins, R. D., and Kandel, E. R. 1996. Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678-1683.

    PubMed  Google Scholar 

  30. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R., and Bach, M. E. 1998. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39-49.

    PubMed  Google Scholar 

  31. Mansuy, I. M., Winder, D. G., Moallem, T. M., Osman, M., Mayford, M., Hawkins, R. D., and Kandel, E. R. 1998. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257-265.

    PubMed  Google Scholar 

  32. Thomas, K. R., and Capecchi, M. R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503-512.

    PubMed  Google Scholar 

  33. Lakso, M., Saucer, B., Mosinger, B. J., Lee, E. J., Minning, R. W., Yu, S. H., Mulder, K. L., and Westphal, H. 1992. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89:6232-6236.

    PubMed  Google Scholar 

  34. Orban, P. C., Chui, D., and Marth, J. D. 1992. Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89:6861-6865.

    PubMed  Google Scholar 

  35. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265:103-106.

    PubMed  Google Scholar 

  36. Chen, C., and Tonegawa, S. 1997. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20:157-184.

    PubMed  Google Scholar 

  37. Li, Y., Erzurumlu, R., Chen, C., Jhaveri, S., and Tonegawa, S. 1994. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76:427-437.

    PubMed  Google Scholar 

  38. Forrest, D., Yuzaki, M., Soares, H. D., Ng, L., Luk, D. C., Sheng, M., Stewart, C. L., Morgan, J. I., Conner, J. A., and Curran, T. 1994. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13:325-338.

    PubMed  Google Scholar 

  39. Tsien, J. Z., Huerta, P. T., and Tonegawa, S. 1996. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327-1338.

    PubMed  Google Scholar 

  40. Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., Mayford, M., Kandel, E. R., and Tonegawa, S. 1996. Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87:1317-1326.

    PubMed  Google Scholar 

  41. St.-Onge, L., Furth, P. A., and Gruss, P. 1996. Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24:3875-3877.

    PubMed  Google Scholar 

  42. Sauer, B. 1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:381-392.

    PubMed  Google Scholar 

  43. Metzger, D., Clifford, J., Chiba, H., and Chambon, P. 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92:6991-6995.

    PubMed  Google Scholar 

  44. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. 1996. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93:10887-10890.

    PubMed  Google Scholar 

  45. Zhang, Y., Riesterer, C., Ayrall, A. M., Sablitzky, F., Littlewood, T. D., and Reth, M. 1996. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24:543-548.

    PubMed  Google Scholar 

  46. Schwenk, F., Kuhn, R., Angrand, P. O., Rajewsky, K., and Stewart, A. F. 1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26:1427-1432.

    PubMed  Google Scholar 

  47. Brocard, J., Feil, R., Chambon, P., and Metzger, D. 1998. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26:4086-4090.

    PubMed  Google Scholar 

  48. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8:1323-1326.

    PubMed  Google Scholar 

  49. Valentijn, L. J., Bolhuis, P. A., Zorn, I., Hoogendijk, J. E., Van den Bosch, N., Hensels, G. W., Stanton, V. P. Jr., Housman, D. E., Fischbeck, K. H., Ross, D. A., Nicholson, G. A., Meershoek, E. J., Dauwerse, H. G., van Ommen, G. J. B., and Baas, F. 1992. The peripheral myelin gene PMP-22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nature Genet. 1:166-170.

    PubMed  Google Scholar 

  50. Ramirez-Soils, R., Liu, P., and Bradley, A. 1995. Chromosome engineering in mice. Nature 378:720-724.

    PubMed  Google Scholar 

  51. Lewandoski, M., and Martin, G. R. 1997. Cre-mediated chromosome loss in mice. Nature Genet. 17:223-225.

    PubMed  Google Scholar 

  52. Li, Z. W., Stark, G., Gotz, J., Rulicke, T., Gschwind, M., Huber, G., Muller, U., and Weissmann, C. 1996. Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 93:6158-6162.

    PubMed  Google Scholar 

  53. Drago, J., Padungchaichot, P., Wong, J. Y. F., Lawrance, A. J., McManus, J. F., Sumarsono, S. H., Natoli, A. L., Wreford, N., Westphal, H., Kola, I., and Finkelstein, D. I. 1998. Targeted expression of a toxin gene to D1 Dopamine receptor neurons by Cre mediated site-specific recombination. J. Neurosci. 18:9845-9857.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Kemper, A. & Popko, B. Advanced Transgenic and Gene-Targeting Approaches. Neurochem Res 24, 1181–1188 (1999). https://doi.org/10.1023/A:1020772706279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020772706279

Navigation