Skip to main content
Log in

Distinction Between the Depletion of Opsonins and the Saturation of Uptake in the Dose-Dependent Hepatic Uptake of Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Opsonins play a role in the hepatic uptake of particles such as bacteria, lipid emulsion, and liposomes. The objective of this study was to distinguish between opsonin depletion and uptake saturation in the dose-dependent hepatic uptake of liposomes. The uptake of opsonized and unopsonized liposomes was determined in the isolated perfused liver. Serum (2.9 mL) was required to opsonize 1 µmol liposomes fully, indicating that a rat (250 g with 10 mL of serum) can opsonize 3.5 µmol liposomes. Next the dose effect on hepatic uptake of opsonized and unopsonized liposomes was examined. Saturation of uptake was found only for the opsonized liposomes. On the other hand, the hepatic uptake clearance decreased dose dependently from 4.31 to 0.79 (mL/min), with increasing doses from 0.075 to 17 µmol/250 g, respectively, after i.v. administration. Thus, the decrease in the hepatic uptake clearance at the medium dose was due to the saturation of uptake alone, and at the high dose it was due to opsonin depletion as well. These results show that the saturation of liposomal uptake in the liver and the depletion of opsonins occurred at different liposome dosage levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Gregoriadis and J. Senior. The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the ciruclation. FEBS Lett. 11943–11946 (1980).

  2. H. H. Spanjer, M. van Galen, F. H. Roerdink, J. Regts, and G. L. Scherphof. Intrahepatic distribution of small unilamellar liposomes as a function of liposomal lipid composition. Biochim. Biophys. Acta 863:224–230 (1986).

    Google Scholar 

  3. R. M. Abra and C. A. Hunt. Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim. Biophys. Acta 666:493–503 (1981).

    Google Scholar 

  4. P. L. Beaumier and K. J. Hwang. Effects of liposomes size on the degradation of bovine brain sphingomyelin/cholesterol liposomes in the mouse liver. Biochim. Biophys. Acta 731:23–30 (1983).

    Google Scholar 

  5. T. M. Allen and J. M. Everest. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J. Pharm. Exp. Ther. 226:539–544 (1983).

    Google Scholar 

  6. M. E. Bosworth and C. A. Hunt. Liposome disposition in vivo. II. Dose dependency. J. Pharm. Sci. 71:100–104 (1982).

    Google Scholar 

  7. P. L. Beaumier, K. J. Hwang, and J. T. Slattery. Effect of liposome dose on the elimination of small unilamellar sphingomyelin/cholesterol vesicles from the circulation. Res. Comm. Chem. Path. Pharmacol. 39:277–289 (1983).

    Google Scholar 

  8. Y. Sato, H. Kiwada, and Y. Kato. Effects of dose and vesicle size on the pharmacokinetics of liposomes. Chem. Pharm. Bull. 34:4244–4252 (1986).

    Google Scholar 

  9. G. Gregoriadis. Fate of injected liposomes: Observations on entrapped solute retention, vesicle clearance and tissue distribution in vivo. In G. Gregoriadis (ed.), Liposomes as Drug Carriers, John Wiley & Sons, New York, 1988, pp. 3–18.

    Google Scholar 

  10. J. H. Senior. Fate and behavior of liposomes in vivo: A review of controlling factors. CRC Crit. Rev. Ther. Drug Carrier Syst. 3:123–193 (1987).

    Google Scholar 

  11. A. Gabizon and D. Papahadjopoulos. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 85:6949–6953 (1988).

    Google Scholar 

  12. E. Roerdink, J. Dijksra, G. Hartman, B. Bolscher, and G. Scherphof. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes. Biochim. Biophys. Acta 677:79–89 (1981).

    Google Scholar 

  13. Y. E. Rahman, E. A. Cerny, K. R. Patel, E. H. Lau, and B. J. Wright. Differential uptake of liposomes varying in size and lipid composition by parenchymal and Kupffer cells of mouse liver. Life Sci. 31:2061–2071 (1982).

    Google Scholar 

  14. D. D. Chow, H. E. Essien, M. M. Padki, and K. J. Hwang. Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect. J. Pharm. Exp. Ther. 248:506–513 (1989).

    Google Scholar 

  15. Y. Kume, F. Maeda, H. Harashima, and H. Kiwada. Saturable, non-Michaelis-Menten uptake of liposomes by reticuloendothelial system. J. Pharm. Pharmacol. 43:162–166 (1991).

    Google Scholar 

  16. H. Harashima, Y. Kume, C. Yamane, and H. Kiwada. Non-Michaelis Menten type uptake of liposomes: Evidence for AUC or uptake amount dependency. J. Pharm. Pharmacol. 44:707–712 (1992).

    Google Scholar 

  17. C. J. van Oss, C. F. Gillman, P. M. Bronson, and J. R. Border. Opsonic properties of human serum alpha-2 HS glycoprotein. Imm. Com. 3:329–335 (1974).

    Google Scholar 

  18. J. Molnar, S. Mclain, C. Allen, H. Laga, A. Gara, and F. Gelder. The role of an alpha2-macroglobulin of rat serum in the phagocytosis of colloidal particles. Biochim. Biophys. Acta 493:37–54 (1977).

    Google Scholar 

  19. T. M. Saba, J. P. Filkins, and N. R. Di Luzio. Properties of the “opsonic system” regulating in vitro hepatic phagocytosis. J. Reticuloendothel. Soc. 3:398–414 (1966).

    Google Scholar 

  20. S. M. Moghimi and H. M. Patel. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett. 233:143–147 (1988).

    Google Scholar 

  21. S. D. Wright and P. A. Detmers. Receptor-mediated phagocytosis. In R. G. Crystal and J. B. West (eds.), The Lung, Raven Press, New York, 1991, pp. 539–551.

    Google Scholar 

  22. S. Miyauchi, Y. Sugiyama, Y. Sawada, K. Morita, T. Iga, and M. Hanano. Kinetics of hepatic transport of 4-methylumbeliferone in rats. Analysis by multiple indicator dilution method. J. Pharmacokin. Biopharm. 15:25–38 (1987).

    Google Scholar 

  23. K. Yamaoka, Y. Tanigawara, and T. Nakagawa. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharm. Dyn. 4:879–890 (1981).

    Google Scholar 

  24. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexate in vivo. J. Pharm. Sci. 62:882–890 (1973).

    Google Scholar 

  25. S. Becker. Functions of the human mononuclear phagocyte system. Adv. Drug Del. Rev. 2:1–29 (1988).

    Google Scholar 

  26. S. M. Moghimi and H. Patel. Serum opsonins and phagocytosis of saturated and unsatruated phospholipid liposomes. Biochim. Biophys. Acta 984:384–387 (1989).

    Google Scholar 

  27. A. R. Nicholas and M. N. Jones. The effect of blood on the uptake of liposomal lipid by perfused rat liver. Biochim. Biophys. Acta 1074:105–111 (1991).

    Google Scholar 

  28. D. A. Tyrrell, V. J. Richardson, and B. E. Ryman. The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim. Biophys. Acta 497:469–480 (1977).

    Google Scholar 

  29. H. Kiwada, T. Miyajima, and Y. Kato. Studies on the uptake mechanism of liposomes by perfused rat liver. II. An indispensable factor for liver uptake in serum. Chem. Pharm. Bull. 35:1189–1195 (1987).

    Google Scholar 

  30. K. Funato, R. Yoda, and H. Kiwada. Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in rat fresh plasma. Biochim. Biophys. Acta 1103:198–204 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harashima, H., Sakata, K. & Kiwada, H. Distinction Between the Depletion of Opsonins and the Saturation of Uptake in the Dose-Dependent Hepatic Uptake of Liposomes. Pharm Res 10, 606–610 (1993). https://doi.org/10.1023/A:1018918623658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018918623658

Navigation