Skip to main content
Log in

Soluble VEGFR-1 secreted by endothelial cells and monocytes is present in human serum and plasma from healthy donors

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

It was shown before that the soluble form of VEGFR-1 (sVEGFR-1) is present in serum of pregnant women. The aim of the present study was to investigate the presence of this endogenous vascular endothelial growth factor-A (VEGF-A) antagonist in human serum in more detail. sVEGFR-1 was detected in human serum and plasma from normal healthy male and female donors by ELISA. sVEGFR-1 levels ranged from non-detectable up to 440 pg/ml, with no significant difference between male and female donors. In addition, vein endothelial cells (ECs) from an intact vascular bed, the umbilical cord, were shown to secrete sVEGFR-1. Furthermore, human peripheral blood monocytes, a non-EC type expressing VEGFR-1, were shown to contribute to the sVEGFR-1 detectable in human serum and plasma for the first time. EC- and monocyte-derived sVEGFR-1 proved capable of inhibiting the VEGF-induced proliferation and migration of ECs in vitro. Finally, secretion of sVEGFR-1 was increased by the angiogenic factor basic fibroblast growth factor (bFGF) in human ECs and was also enhanced in lipopolysaccharide-activated human monocytes. In human umbilical vein endothelial cells, both the membrane-bound and the sVEGFR-1 seem to be equally regulated on the mRNA as well as the protein level. The presence of an sVEGFR-1 in human serum and plasma of normal male and female donors strongly suggests that it plays an important role as a naturally occurring VEGF antagonist in the regulation and availability of VEGF-mediated biological activities in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845–8.

    Article  PubMed  CAS  Google Scholar 

  2. Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–7.

    Article  PubMed  CAS  Google Scholar 

  3. Fava RA, Olson NJ, Spencer-Green G et al. Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 1994; 180: 341–6.

    Article  PubMed  CAS  Google Scholar 

  4. Detmar M, Brown LF, Claffey KP et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 1994; 180: 1141–6.

    Article  PubMed  CAS  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    PubMed  CAS  Google Scholar 

  6. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999; 9: 211–20.

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.

    Article  PubMed  CAS  Google Scholar 

  8. Fong G-H, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  PubMed  CAS  Google Scholar 

  9. de Vries C, Escobedo JA, Ueno H et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–91.

    PubMed  CAS  Google Scholar 

  10. Terman BI, Dougher-Vermazen M, Carrion ME et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–86.

    Article  PubMed  CAS  Google Scholar 

  11. Borg JP, Barleon B, Marmé D, Birnbaum D. The family of VEGF tyrosine kinase receptors. In Lonai P (ed): Towards a Molecular Analysis of Mammalian Development. Reading, UK: Harwood Academic 1996.

    Google Scholar 

  12. Barleon B, Sozzani S, Zhou D et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–43.

    PubMed  CAS  Google Scholar 

  13. Takagi H, King GL, Aiello LP. Identification and characterization of vascular endothelial growth factor receptor (FLT) in bovine retinal pericytes. Diabetes 1996; 45: 1016–23.

    PubMed  CAS  Google Scholar 

  14. Clark DE, Smith SK, He Y et al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59: 1540–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–8.

    Article  PubMed  CAS  Google Scholar 

  16. Wang G, Thomas KA. Purification and characterization of a functional soluble fibroblast growth factor receptor 1. Biochem Biophys Res Commun 1994; 203: 1781.

    Article  PubMed  CAS  Google Scholar 

  17. Yabkowitz R, Meyer S, Yanagihara D et al. Regulation of Tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble Tie. Blood 1997; 90: 706–15.

    PubMed  CAS  Google Scholar 

  18. Tiesman J, Hart CE. Identification of a soluble receptor for platelet-derived growth factor in cell-conditioned medium and human plasma. J Biol Chem 1993; 268: 9621–7.

    PubMed  CAS  Google Scholar 

  19. Günther N, Betzel C, Weber W. The secreted form of the epidermal growth factor receptor. Characterization and crystallization of the receptor-ligand complex. J Biol Chem 1990; 265: 22082–5.

    PubMed  Google Scholar 

  20. Yabkowitz R, Meyer S, Black T et al. Inflammatory cytokines and vascular endothelial growth factor stimulates the release of soluble TIE receptor from human endothelial cells via metalloproteinase activation. Blood 1999; 93: 1969–79.

    PubMed  CAS  Google Scholar 

  21. Shibuya M, Yamaguchi S, Yamane A et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990; 5: 519–24.

    PubMed  CAS  Google Scholar 

  22. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705–9.

    Article  PubMed  CAS  Google Scholar 

  23. Sozzani SW, Luini W, Molino M et al. The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J Immunol 1991; 147: 2215–21.

    PubMed  CAS  Google Scholar 

  24. Fiebig B, Jäger B, Schöllmann C et al. Synthesis and assembly of a functionally active human vascular endothelial growth factor homodimers in insect cells. Eur J Biochem 1992; 211: 19–26.

    Article  Google Scholar 

  25. Hunter W, Greenwood FC. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 1962; 194: 495–6.

    Article  PubMed  CAS  Google Scholar 

  26. Barleon B, Totzke F, Herzog C et al. Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the VEGF receptor FLT-1. J Biol Chem 1997; 272: 10382–8.

    Article  PubMed  CAS  Google Scholar 

  27. Barleon B, Siemeister G, Martiny-Baron G et al. Vascular endothelial growth factor upregulates its receptor FLT-1 and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 1997; 57: 5421–5.

    PubMed  CAS  Google Scholar 

  28. Barleon B, Hauser S, Schöllmann C et al. Differential expression of the two VEGF receptors flt and KDR in placenta and vascular endothelial cells. J Cell Biochem 1994; 54: 56–66.

    Article  PubMed  CAS  Google Scholar 

  29. Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA. Integrin β1-and β3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 1993; 121: 163–70.

    Article  PubMed  CAS  Google Scholar 

  30. Barleon B, Weich HA, Marmé D. Differential regulation of the two VEGF receptor genes Flt-1 and KDR by cytokines and growth factors. J Cell Biochem 1994; (Suppl 18A): EZ200 (Abstr).

    Google Scholar 

  31. Sunderkötter C, Steinbrink K, Goebeler M et al. Macrophages and angiogenesis. J Leuk Biol 1994; 55: 410–22.

    Google Scholar 

  32. Hornig C, Behn T, Bartsch W et al. Detection and quantification of complexed and free soluble human vascular endothelial growth factor receptor-1 (sVEGFR-1) by ELISA. J Immunol Meth 1999; 226: 169–77.

    Article  CAS  Google Scholar 

  33. He Y, Smith SK, Day KA et al. Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 1999; 13: 537–45.

    Article  PubMed  CAS  Google Scholar 

  34. Banks RE, Forbes MA, Searles J et al. Evidence for the existence of a novel pregnancy-associated soluble variant of the vascular endothelial growth factor receptor, Flt-1. Mol Hum Reprod 1998; 4: 377–86.

    Article  PubMed  CAS  Google Scholar 

  35. Heaney ML, Golde DW. Soluble cytokine receptors. Blood 1996; 87: 847–57.

    PubMed  CAS  Google Scholar 

  36. Rose-John S, Heinrich PC. Soluble receptors for cytokines and growth factors: Generation and biological function. Biochem J 1994; 300: 281–90.

    PubMed  CAS  Google Scholar 

  37. Aiello LP, Pierce EA, Foley ED et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92: 10457–61.

    Article  PubMed  CAS  Google Scholar 

  38. Lin P, Sankar S, Shan S et al. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ 1998; 9: 49–58.

    PubMed  CAS  Google Scholar 

  39. Kong HL, Hecht D, Song W et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum Gene Ther 1998; 10: 823–33.

    Google Scholar 

  40. Goldman CK, Kendall RL, Cabrera G et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 1998; 95: 8795–800.

    Article  PubMed  CAS  Google Scholar 

  41. Siemeister G, Schirner M, Weindel K et al. Two independent mechanisms essential for tumor growth angiogenesis: Inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 1999; 59: 3185–91.

    PubMed  CAS  Google Scholar 

  42. Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 1997; 57: 3852–9.

    PubMed  CAS  Google Scholar 

  43. Pepper MS, Mandriota SJ. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Exp Cell Res 1998; 241: 414–25.

    Article  PubMed  CAS  Google Scholar 

  44. Koch AE, Polverini PJ, Leibovich SJ. Induction of neovascularization by activated human monocytes. J Leuk Biol 1986; 39: 233–8.

    CAS  Google Scholar 

  45. Polverini PJ, Cotrans RS, Gimbrone MA Jr, Unanue EM. Activated macrophages induce vascular proliferation. Nature 1997; 269: 804–6.

    Article  Google Scholar 

  46. Inoue T, Kibata K, Suzuki M et al. Identification of a vascular endothelial growth factor (VEGF) antagonist, sFlt-1, from a human hematopoietic cell line NALM-16. FEBS Lett 2000; 469: 14–8.

    Article  PubMed  CAS  Google Scholar 

  47. Ratajczak MZ, Ratajczak J, Machalinski B et al. Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth. Br J Haematol 1998; 103: 969–79.

    Article  PubMed  CAS  Google Scholar 

  48. Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2: 1096–103.

    Article  PubMed  CAS  Google Scholar 

  49. Katoh O, Tauchi H, Kawaishi K et al. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995; 55: 5687–92.

    PubMed  CAS  Google Scholar 

  50. Hiratsuka S, Minowa O, Kuno J et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95: 9349–54.

    Article  PubMed  CAS  Google Scholar 

  51. Harris AL, Reusch P, Barleon B et al. Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin Cancer Res 2001; 7: 1992–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barleon, B., Reusch, P., Totzke, F. et al. Soluble VEGFR-1 secreted by endothelial cells and monocytes is present in human serum and plasma from healthy donors. Angiogenesis 4, 143–154 (2001). https://doi.org/10.1023/A:1012245307884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012245307884

Navigation