Skip to main content
Log in

Butyrylcholinesterase-Mediated Enhancement of the Enzymatic Activity of Trypsin

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are enzymes that catalyze the hydrolysis of esters of choline.

2. Both AChE and BuChE have been shown to copurify with peptidases.

3. BuChE has also been shown to copurify with other proteins such as transferrin, with which it forms a stable complex. In addition, BuChE is found in association with β-amyloid protein in Alzheimer brain tissues.

4. Since BuChE copurifies with peptidases, we hypothesized that BuChE interacts with these enzymes and that this association had an influence on their catalytic activities. One of the peptidases that copurifies with cholinesterases has specificity similar to trypsin, hence, this enzyme was used as a model to test this hypothesis.

5. Purified BuChE causes a concentration-dependent enhancement of the catalytic activity of trypsin while trypsin does not influence the catalytic activity of BuChE.

6. We suggest that, in addition to its esterase activity, BuChE may assume a regulatory role by interacting with other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allemand, P., Bon, S., Massoulié, J., and Vigny, M. (1981). The quaternary structure of chicken acetyl-cholinesterase and butyrylcholinesterase: Effect of collagenase and trypsin. J. Neurochem. 36:860-867.

    Google Scholar 

  • Balasubramanian, A. S., and Bhanumathy, C. D. (1993). Noncholinergic functions of cholinesterases. FASEB J. 7:1354-1358.

    Google Scholar 

  • Boopathy, A., and Balasubramanian, A. S. (1987). Peptidase activity exhibited by human serum pseudocholinesterase. Eur. J. Biochem. 162:191-197.

    Google Scholar 

  • Caroll, R. T., and Emmerling, M. R. (1991). Identification of the trypsin-like activity in commercial preparations of eel acetylcholinesterase. Biochem. Biophys. Res. Commun. 181:358-362.

    Google Scholar 

  • Checler, F., Grassi, J., Masson, P., and Vincent, J.-P. (1990). Monoclonal antibodies allow precipitation of esterasic but not peptidasic activities associated with butyrylcholinesterase. J. Neurochem. 55:750-755.

    Google Scholar 

  • Checler, F., Grassi, J., Masson, P., and Vincent, J.-P. (1994). Cholinesterases display genuine aryl acylamidase activity but are totally devoid of intrinsic peptidase activities. J. Neurochem. 62:756-763.

    Google Scholar 

  • Chong, Y. H., and Suh, Y.-H. (1996). Amyloidogenic processing of Alzheimer's amyloid precursor protein in vitro and its modulation by metal ions and tacrine. Life Sci. 59:545-557.

    Google Scholar 

  • Chubb, I. W., Hodgson, A. J., and White, G. H. (1980). Acetylcholinesterase hydrolyzes substance P. Neuroscience 5:2065-2072.

    Google Scholar 

  • Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184-1190.

    Google Scholar 

  • Darvesh, S., Kumar, R., and Martin, E. (1999). Enzyme kinetics of butyrylcholinesterase and trypsin: Implications in Alzheimer's disease. Can. J. Neurol. Sci. 26:546-547.

    Google Scholar 

  • Darvesh, S., MacDonald, S. E., Losier, A. M., Martin, E., Hopkins, D. A., and Armour, J. A. (1998). Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. J. Auton. Nerv. Syst. 71:75-84.

    Google Scholar 

  • De Serres, M., Sherman, D., Chestnut, W., Merrill, B. M., Viveros, O. H., and Diliberto, E. J., Jr. (1993). Proteolysis at the secretase and amyloidogenic cleavage sites of the beta-amyloid precursor protein by acetylcholineterase and butyrylcholinesterase using model peptide substrates. Cell Mol. Neurobiol. 13:279-287.

    Google Scholar 

  • Dixon, M., and Webb, E. C. (1979). Enzymes, 3rd edn., Academic Press, New York, pp. 389-391.

    Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88-95.

    Google Scholar 

  • Friede, R. L. (1965). Enzyme histochemical studies of senile plaques. J. Neuropathol. Exp. Neurol. 24:477-491.

    Google Scholar 

  • Gatley, S. J. (1991). Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. biochem. Pharmacol. 41:1249-1254.

    Google Scholar 

  • Geula, C., Greenberg, D., and Mesulam, M.-M. (1994). Cholinesterase activity in the plaques, tangles and angiopathy of Alzheimer's disease does not emanate from amyloid. Brain Res. 644:327-330.

    Google Scholar 

  • Geula, C., and Mesulam, M.-M. (1989). Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res. 498:185-189.

    Google Scholar 

  • Geula, C., and Mesulam, M.-M. (1995). Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2:23-28.

    Google Scholar 

  • Giacobini, E., Griffini, P. L., Maggi, T., Mascellani, G., and Mandelli, R. (1996). Butyrylcholinesterase: Is it important for cortical acetylcholine regulation? Neurosci. Abs. 22:203.

    Google Scholar 

  • Gomez-Ramos, P., Bouras, C., and Moran, M. A. (1994). Ultrastructural localization of butyryl-cholinesterase on neurofibrillary degeneration sites in the brains of aged and Alzheimer's disease patients. Brain Res. 640:17-24.

    Google Scholar 

  • Grunwald, J., Marcus, D., Papier, Y., Raveh, L., Pittel, Z., and Ashani, Y. (1997). Large-scale purification and long-term stability of human butyrylcholinesterase: A potential bioscavenger drug. J. Biochem. Biophys. Methods 34:123-135.

    Google Scholar 

  • Guillozet, A. L., Smiley, J. F., Mash, D. C., and Mesulam, M.-M. (1997). Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42:909-918.

    Google Scholar 

  • Koshikawa, N., Hasegawa, S., Nagashima, Y., Mitsuhashi, K., Tsubota, Y., Miyata, S., Miyagi, Y., Yasumitsu, H., and Miyazaki, K. (1998). Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol. 153:937-944.

    Google Scholar 

  • Kruger-Thiemer, E. (1969). Generalized kinetics of reversible inhibition and activation. Eur. J. Pharmacol. 6:357-360.

    Google Scholar 

  • Layer, P. G. (1995). Non-classical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis. Assoc. Disord. 9:29-36.

    Google Scholar 

  • Li, B., Stribley, J. A., Ticu, A., Xie, W., Schopfer, L. M., Hammond, P., Brimijoin, S., Hinrichs, S. H., and Lockridge, O. (2000). Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 75:1320-1331.

    Google Scholar 

  • Lockridge, O. (1982). Substance P hydrolysis by human serum cholinesterase. J. Neurochem. 36:106-110.

    Google Scholar 

  • Lockridge, O., and La Du, B. N. (1982). Loss of the interchain disulfide peptide and dissociation of the tetramer following limited proteolysis of native human serum cholinesterase. J. Biol. Chem. 257:12012-12018.

    Google Scholar 

  • Lockridge, O., Mottershaw-Jackson, N., Eckerson, H., and La Du, B. N. (1980). Hydrolysis of diacetylmorphine (heroin) by human serum cholinesterase. J. Pharmacol. Exp. Ther. 215:1-8.

    Google Scholar 

  • Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., Nguyen, H., Brickman, C. M., and LeWitt, P. (1995). Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65:710-724.

    Google Scholar 

  • Masson, P. (1989). A naturally occurring molecular form of human plasma cholinesterase is an albumin conjugate. Biochim. Biophys. Acta 998:258-266.

    Google Scholar 

  • Masson, P., Froment, M. T., Fortier, P. L., Visicchio, J. E., Bartels, C. F., and Lockridge, O. (1998). Butyrylcholinesterase-catalyzed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta 1387:41-52.

    Google Scholar 

  • Meckelein, B., Marshall, D. C. L., Conn, K.-J., Pietopaolo, M., Van Nostrand, W., and Abraham, C. (1998). Identification of a novel serine protease-like molecule in human brain. Brain Res. Mol. Brain Res. 55:181-197.

    Google Scholar 

  • Mescher, A. L., and Munaim, S. I. (1988). Transferrin and the growth-promoting effect of nerves. Int. Rev. Cytol. 110:1-26.

    Google Scholar 

  • Mesulam, M.-M., and Geula, C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36:722-727.

    Google Scholar 

  • Minn, A., Schubert, M., Neiss, W. F., and Muller-Hill, B. (1998). Enhanced GFAP expression in astrocytes of transgenic mice expressing the human brain-specific trypsinogen IV. Glia 22:338-347.

    Google Scholar 

  • Morrison, J. F., and Ebner, K. E. (1971). Studies on galactosyltransferase: Kinetic effects of α-lactalbumin with N-acetylglucosamine and glucose as galactosyl group acceptors. J. Biol. Chem. 246:3992-3998.

    Google Scholar 

  • Norel, X., Angrisani, M., Labat, C., Gorenne, I., Dulmet, E., Rossi, F., and Brink, C. (1993). Degradation of acetylcholine in human airways: Role of butyrylcholinesterase. Br. J. Pharmacol. 109:914-919.

    Google Scholar 

  • Nunan, J., and Small, D. H. (2000). Regulation of APP cleavage by alpha-, beta-and gamma-secretases. FEBS Lett. 483:6-10.

    Google Scholar 

  • Ogawa, K., Yamada, T., Tsujioka, Y., Taguchi, J., Takahashi, M., Tsuboi, Y., Fujino, Y., Nakajima, M., Yamamoto, T., Akatsu, H., Mitsui, S., and Yamaguchi, N. (2000). Localization of a novel type trypsin-like serine protease, neurosin, in brain tissues of Alzheimer's disease and Parkinson's disease. Psychiatry Clin. Neurosci. 54:419-426.

    Google Scholar 

  • Op den Velde, W., and Stam, F. C. (1976). Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. J. Am. Geriatr. Soc. 24:12-16.

    Google Scholar 

  • Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of the Alzheimer type. Neuropathol. Appl. Neurobiol. 4:273-277.

    Google Scholar 

  • Rao, R. V., and Balasubramanian, A. S. (1990). Localization of the peptidase activity of human serum butyrylcholinesterase in a approximately 50-kDa fragment obtained by limited alpha-chymotrypsin digestion. Eur. J. Biochem. 188:637-643.

    Google Scholar 

  • Rao, R. V., and Balasubramanian, A. S. (1993). The peptidase activity of human serum butyrylcholinesterase: Studies using monoclonal antibodies and characterization of the peptidase. J. Protein Chem. 12:103-110.

    Google Scholar 

  • Robitzki, A., Doll, F., Richter-Landsberg, C., and Layer, P.G. (2000). Regulation of the rat oligodendroglia cell line OLN-93 by antisense transfection of butyrylcholinesterase. Glia 31:195-205.

    Google Scholar 

  • Silver, A. (1974). The Biology of Cholinesterases, Elsevier, Amsterdam.

    Google Scholar 

  • Small, D. H. (1988). Serum acetylcholinesterase possesses trypsin-like and carboxypeptidase B-like activity. Neurosci. Lett. 95:307-312.

    Google Scholar 

  • Small, D. H. (1990). Non-cholinergic actions of acetylcholinesterases: Proteases regulating cell growth and development? Trends Biochem. Sci. 15:213-216.

    Google Scholar 

  • Small, D. H., Ismael, Z., and Chubb, I. W. (1987). Acetylcholinesterase exhibits trypsin-like and metalloexopeptidase-like activity in cleaving a model peptide. Neuroscience 21:991-995.

    Google Scholar 

  • Small, D. H., Michaelson, S., and Sberna, G. (1996). Non-classical actions of cholinesterases: Role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem. Int. 28:453-483.

    Google Scholar 

  • Small, D. H., Moir, R. D., Fuller, S. J., Michaelson, S., Bush, A. I., Li, Q.-X., Milward, E., Hilbich, E., Weidenmann, A., Beyreuther, K., and Masters, C. L. (1991). A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer's disease. Biochemistry 30:10795-10799.

    Google Scholar 

  • Tomita, S., Kirino, Y., and Suzuki, T. (1998). A basic amino acid in the cytoplasmic domain of Alzheimer's beta-amyloid precursor protein (APP) is essential for cleavage of APP at the alpha-site. J. Biol. Chem. 273:19304-19310.

    Google Scholar 

  • Vigny, M., Gisiger, V., and Massoulié, J. (1978). “Nonspecific” cholinesterase and acetylcholinesterase in rat tissues: Molecular forms, structural and catalytic properties, and significance of the two enzyme systems. Proc. Natl. Acad. Sci. USA 75:2588-2592.

    Google Scholar 

  • Weitnauer, E., Ebert, C., Hucho, F., Robitzki, A., Weise, C., and Layer, P. G. (1999). Butyrylcholinesterase is complexed with transferrin in chicken serum. J. Protein Chem. 18:205-214.

    Google Scholar 

  • Wright, C. I., Geula, C., and Mesulam, M.-M. (1993). Neuroglial cholinesterases in the normal brain and in Alzheimer's disease: Relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol. 34:373-384.

    Google Scholar 

  • Yoshida, S., Taniguchi, M., Suemoto, T., Oka, T., He, X., and Shiosaka, S. (1998). cDNA cloning and expression of a novel serine protease, TLSP. Biochim. Biophys. Acta 1399:225-228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darvesh, S., Kumar, R., Roberts, S. et al. Butyrylcholinesterase-Mediated Enhancement of the Enzymatic Activity of Trypsin. Cell Mol Neurobiol 21, 285–296 (2001). https://doi.org/10.1023/A:1010947205224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010947205224

Navigation