Skip to main content
Log in

Will imaging of apoptosis play a role in clinical care? A tale of mice and men

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Programmed cell death (apoptosis) plays a role in the pathophysiology of many diseases and in the outcome of treatment. Apoptosis is the likely mechanism behind the cytoreductive effects of standard chemotherapeutic and radiation treatments, rejection of organ transplants, cellular damage in collagen vascular disorders, and delayed cell death due to hypoxic-ischemic injury in myocardial infarction and neonatal hypoxic ischemic injury. Observations about the role of apoptosis have fueled the development of novel agents and treatment strategies specifically aimed at inducing or inhibiting apoptosis.

Despite these research developments there are no clinical entities where specific measures of apoptosis are used in either diagnosis or patient management. Part of the difficulty in bridging the gap between the basic science understanding of apoptosis and the clinical application of this information is the lack of a sensitive marker to monitor programmed cell death in association with disease progression or regression. Technetium-99m labeled annexin V localizes at sites of apoptosis in-vivo, due to its nanomolar affinity for membrane bound phosphatidylserine. Radiolabeled annexin V imaging permits identification of the site and extent of apoptosis in experimental animals. Annexin V has been successfully used in animal models to image organ transplant rejection, characterize successful therapy of tumors, pinpoint acute myocardial infarction, and identify hypoxic ischemic brain injury of the newborn and adult. Early studies in human subjects suggest that 99mTc annexin imaging will be also be useful to identify rejection in transplant recipients, localize acute myocardial infarction, and characterize the effectiveness of a single treatment in patients with tumors.

This review describes the imaging approaches to detect and monitor apoptosis in-vivo that are presently in early clinical trials. The preliminary data are extrapolated to identify conditions where apoptosis imaging may be valuable in clinical decision making. These conditions include: transplant rejection; hypoxic/ischemic injury of heart and brain; and determining the efficacy of therapy in cancer, heart failure and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 2000; 15: 109–120.

    PubMed  Google Scholar 

  2. Dahmoun M, Boman K, Cajander S, Westin P, Backstrom T. Apoptosis, proliferation, and sex hormone receptors in super-ficial parts of human endometrium at the end of the secretory phase. J Clin Endocrinol Metab 1999; 84: 1737–1743.

    PubMed  Google Scholar 

  3. Ju ST, Matsui K, Ozdemirli M. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction. Int Rev Immunol 1999; 18: 485–513.

    PubMed  Google Scholar 

  4. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    PubMed  Google Scholar 

  5. The London Economist. Science and Technology; Honorable death. May 4th 1996: pp. 83–84.

  6. Rimon G, Bazenet CE, Philpott KL, et al. Increased surface phosphatidylserine is an early marker of neuronal apoptosis. J Neurosci Res 1997; 48: 563–570.

    PubMed  Google Scholar 

  7. Krams SM, Martinez OM. Apoptosis as a mechanism of tissue injury in liver allograft rejection. Seminars in Liver Disease 1998; 18: 153–167.

    PubMed  Google Scholar 

  8. Olivetti G, Abbi R, Quani F, et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131–1141.

    PubMed  Google Scholar 

  9. Darzykiewicz Z. Apoptosis in antitumor strategies: Modulation of cell cycle or differentiation. J Cell Biol 1995; 58: 151–159.

    Google Scholar 

  10. Stefanec T. Endothelial apoptosis; Could it have a role in the pathogenesis and treatment of disease? Chest 2000; 117: 841–854.

    PubMed  Google Scholar 

  11. Rupnow BA, Knox SJ. The role of radiation-induced apoptosis as a determinate of tumor responses to radiation therapy. Apoptosis 1999; 4: 115–143.

    PubMed  Google Scholar 

  12. Brooks PC, Montgomery AMP, Rosenfeld M, et al. Integrin γ v γ 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blodd vessels. Cell 1994; 79: 1157–1164.

    Article  PubMed  Google Scholar 

  13. Rouslahti E, Engvall E. Perspective Series: Cell Adhesion in Vascular Biology. J Clin Invest 1997; 100(Suppl): S53-S56.

    PubMed  Google Scholar 

  14. Polverino AJ, Patterson SD. Selective activation of caspases during apoptotic induction in HL-60 cells. Effects of a tetrapeptide inhibitor. J Biol Chem 1997; 272: 7013–7021.

    PubMed  Google Scholar 

  15. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Porc Natl Acad Sci USA 1997; 94: 2007–2012.

    Google Scholar 

  16. Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat mode of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998; 101: 1992–1999.

    PubMed  Google Scholar 

  17. Cursio R, Gugenheim J, Ricci JE, et al. A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB J 1999; 13: 253–261.

    PubMed  Google Scholar 

  18. Holly TA, Drincic A, Byaun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999; 31: 1709–1715.

    PubMed  Google Scholar 

  19. Farber A, Connors JP, Friedlander RM, Wagner RJ, Powell RJ, Cronenwett JL. A specific inhibitor of apoptosis decreases tissue injury after intestinal ischemia-reperfusion in mice. J Vasc Surg 1999; 30: 752–760.

    PubMed  Google Scholar 

  20. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V. Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood 1999; 93: 2342–2352.

    PubMed  Google Scholar 

  21. Tamm I, Wang Y, Sausville E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Baqx, caspases, and anticancer drugs. Cancer Res 1998; 58: 5315–5320.

    PubMed  Google Scholar 

  22. Blankenberg FG, Strauss HW. Strategies to image cardiovascular apoptosis. Cardiology Clinics 2001.

  23. Star-Lack JM, Adalsteinsson E, Adam MF, et al. In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparision with oxygen tension measurements. Am J Neuroradiol 2000; 21: 183–193.

    PubMed  Google Scholar 

  24. Bhakoo KK, Bell JD. The application of NMR spectroscopy to the study of apoptosis. Cell Mol Biol 1997; 43: 621–629.

    Google Scholar 

  25. Hakumaki JM, Poptani H, Sandmair AM, Yla-Herttuala S, Kauppinen RA. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: Implications for the in vivo detection of apoptosis. Nature Medicine 1999; 5: 1323–1327.

    PubMed  Google Scholar 

  26. Blankenberg FG, Katsikis PD, Storrs RW, et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 1997; 89: 3778–3786.

    PubMed  Google Scholar 

  27. Mehmet H, Yue X, Penrice J, et al. Relation of impaired energy metabolism to apoptosis and necrosis following transient cerebral hypoxia-ischaemia. Cell Death Differ 1998; 5: 321–329.

    PubMed  Google Scholar 

  28. Jung WI, Sieverding L, Breuer J, et al. Circulation 1998; 97: 2536–2542.

    PubMed  Google Scholar 

  29. Negendank W, Sauter R. Intratumoral lipids in 1H MRS in vivo in brain tumors: Experience of the Siemens Cooperative Clinical Trial. Anticancer Research 1996; 16: 1533–1538.

    PubMed  Google Scholar 

  30. Blankenberg FG, Katsikis PF, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 1998; 95: 6349–6354.

    PubMed  Google Scholar 

  31. Blankenberg FG, Katsikis PD, Tait JF, et al. Imaging of apoptosis (programmed cell dealth) with technetium 99m annexin V. Journal of Nuclear Medicine 1999; 40: 184–191.

    PubMed  Google Scholar 

  32. Ohtsuki K, Akashi K, Aoka Y, et al. 99mTc-HYNIC Annexin V:ARadiopharmaceutical for the in vivo detection of apoptosis. European Journal of Nuclear Medicine 1999; 26: 1251–1258.

    PubMed  Google Scholar 

  33. Stratton JR, Dewhurst TA, Kasina S, et al. Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi. Circulation 1995; 92: 3113–3121.

    PubMed  Google Scholar 

  34. Tait JF, Cerqueira MD, Dewhurst TA. Evaluation of annexin V as a platelet-directed thrombus targeting agent. Thrombosis Res 1994; 75: 491–501.

    Google Scholar 

  35. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, vanOers MHJ. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415–1420.

  36. Boersma AMW, Nooter K, Oostrum RG, Stoter G. Quantification of apoptotic cells with fluorescein isothiocyante labeled annexin V in Chinese hamster overay cell cultures treated with cisplatic. Cytometry 1996; 24: 123–130.

    PubMed  Google Scholar 

  37. van Heerde WL, de Groot PG, Reutelingsperger CPM. The complexity of the phospholipid binding protein annexin V. Thromb and Hemostasis 1995; 73: 172–179.

    Google Scholar 

  38. Romisch J, Schuler E, Bastian B, et al. Annexins I to VI: Quantitative determination in different human cell types and in plasma after myocardial infarction. Blood Coagul Fibrinolysis 1992; 3: 11–17.

    PubMed  Google Scholar 

  39. Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y. Measurement of plasma annexin V by ELISA in the early detection of acute myocardial infarction. Clin Chim Acta 1996; 251: 65–80.

    PubMed  Google Scholar 

  40. Reutelinsperger CP, can Heerde W, Hauptmann R, et al. Differential tissue expression of Annexin VIII in Human. FEBS Lett 1994; 349: 120–124.

    PubMed  Google Scholar 

  41. Blankenberg F, Ohtsuki K, Strauss HW. Dying a thousand deaths. Radionuclide imaging of apoptosis. Q J Nucl Med 1999; 43: 170–176.

    PubMed  Google Scholar 

  42. Vriens PW, Blankenberg FG, Stoot JH, et al. The use of technetium Tc 99m annexin V for in vivo imaging of apoptosis during cardiac allograft rejection. J Thorac Cardiovasc Surg 1998; 116: 844–853.

    PubMed  Google Scholar 

  43. Blankenberg FG, Robbins RC, Stoot JH, et al. Radionuclide imaging of acute lung transplant rejection with annexin V. Chest 2000; 117: 834–840.

    PubMed  Google Scholar 

  44. Ogura Y, Krams SM, Martinez OM, et al. Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation. Radiology 2000; 214: 795–800.

    PubMed  Google Scholar 

  45. D'Arceuil HE, Blankenberg FG, De Crespigny AJ, Moseley ME, Strauss HW, Rhine WD. Radionuclide scanning combined with MR diffusion weighted imaging investigation of apoptosis in neonatal rabbit HIE. Pediatric Research 1998; 43: 317A.

    Google Scholar 

  46. Blankenberg FG, Busch E, Yenari MA, et al. In vivo imaging of apoptotic cell death associated with cerebral hemispheric ischemia using 99mTc radiolabeled annexin V. (Abstract) Stroke 1998; 29: 330.

    Google Scholar 

  47. Lee JD, Kim DI, Ryu YH, Whang GJ, Park CI, Kim DG. Technetium-99m-ECD brain SPECT in cerebral palsy: Comparision with MRI. J Nucl Med 1998; 39: 619–623.

    PubMed  Google Scholar 

  48. Rutherford MA, Pennock JM, Counsell SJ, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with Hypoxic-Ischemic encephalopathy. Pediatrics 1998; 102: 323–328.

    PubMed  Google Scholar 

  49. Oka A, Belliveau MJ, Rosenberg PA, et al. Vunerability of oligodendroglia to glutamate: Pharmacology, mechanisms, and prevention. J Neurosci 1993; 13: 1441–1453.

    PubMed  Google Scholar 

  50. Allan WC, Riviello JJ. Perinatal cerebrovascular disease in the neonate: Parenchymal ischemic lesions in term and preterm infants. Pediatric Clin North Am 1992; 39: 621–650.

    Google Scholar 

  51. Barkovich JA, Westmark K, Partridge C, Sola A, Ferriero DM. Perinatal asphyxia: MR findings in the first 10 days. Am J of Neuroradiol 1995; 16: 427–438.

    Google Scholar 

  52. Pulera MR, Adams LM, Liu H, et al. Apoptosis in a neonatal rat model of cerebral Hypoxia-Ischemia. Stroke 1998; 29: 2622–2630.

    PubMed  Google Scholar 

  53. Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic injury. J Clin Invest 1998; 101: 1992–1999.

    PubMed  Google Scholar 

  54. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 2007–2012.

    PubMed  Google Scholar 

  55. Vexler ZS, Roberts TPL, Bollen AW, Derugin N, Arieff AI. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion. J Clin Invest 1997; 99: 1453–1459.

    PubMed  Google Scholar 

  56. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J Cerebr Blood Flow Metab 1996; 16: 195–201.

    Google Scholar 

  57. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. The New England Journal of Medicine 1996; 335: 1182–1195.

    PubMed  Google Scholar 

  58. Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor [see comments]. Circulation 1998; 97: 276–281.

    PubMed  Google Scholar 

  59. Hasegawa S, Nishimura T. Personal commnication.

  60. Geng Y-J, Holm J, Hygren S, et al. Expression of the macrophage scavenger receptor in atheroma. Arterioscler Thromb Vasc Biol. 1995; 15: 1995–2002.

    PubMed  Google Scholar 

  61. Blankenberg FG, Strauss HW. Non-invasive diagnosis of acute heart-or lung-transplant rejection using radiolabeled annexin V. Pediatric Radiology 1999; 29: 299–305.

    PubMed  Google Scholar 

  62. Weis M, von Scheidt W. Cardiac allograft vasculopathy: A review. Circulation 1997; 96: 2069–2077.

    PubMed  Google Scholar 

  63. Dong C, Wilson JE, Winters GL, McManus BM. Human transplant coronary artery disease: Pathological evidence for Fas-mediated apoptotic cytotoxicity in allograft arteriopathy. Lab Invest 1996; 74: 921–931.

    PubMed  Google Scholar 

  64. Lamb JR, Friend SH. Which quesstimate is the best quesstimate? Predicting chemotherapeutic outcomes. Nature Medicine 1997; 9: 962–963.

    Google Scholar 

  65. Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997; 3: 1457–1466.

    PubMed  Google Scholar 

  66. Blankenberg FG, Tait JF, Strauss HW. Apoptotic cell death: Its implications for imaging in the next millenium. Eur J Nucl Med 2000; 27: 359–367.

    PubMed  Google Scholar 

  67. Martin DS, Schwartz GK. Chemotherapeutically induced DNA damage, ATP depletion, and the apoptotic biochemical cascade. Oncology Research 1997; 9: 1–5.

    PubMed  Google Scholar 

  68. Zhang J, Dawson VL, Dawson TM, et al. Nitric Oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263: 687–689.

    PubMed  Google Scholar 

  69. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nature Medicine 1996; 2: 1132–1136.

    PubMed  Google Scholar 

  70. Koletzko B, Aggett PJ, Bindels JG, et al. Growth, development and differentiation: A functional food science approach. Br J Nutr 1998; 80: S5-S45.

    PubMed  Google Scholar 

  71. Manolagas SC. Cellular and molecular mechanisms of osteoporosis. Aging (Milano) 1998; 10: 182–190.

    Google Scholar 

  72. Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA. Bis-phosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 1999; 274: 34967–34973.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blankenberg, F.G., Strauss, H.W. Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6, 117–123 (2001). https://doi.org/10.1023/A:1009640614910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009640614910

Navigation