Skip to main content
Log in

Transforming growth factor-β in breast cancer: A working hypothesis

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Transforming Growth Factor-β (TGFβ) is the most potent knowninhibitor of the progression of normal mammary epithelial cells through thecell cycle. During the early stages of breast cancer development, thetransformed epithelial cells appear to still be sensitive toTGFβ-mediated growth arrest, and TGFβ can act as an anti-tumorpromoter. In contrast, advanced breast cancers are mostly refractory toTGFβ-mediated growth inhibition and produce large amounts of TGFβ,which may enhance tumor cell invasion and metastasis by its effects onextracellular matrix. We postulate that this seemingly paradoxical switch inthe responsiveness of tumor cells to TGFβ during progression is theconsequence of the activation of the latent TGFβ that is produced anddeposited into the tumor microenvironment, thereby driving the clonalexpansion of TGFβ-resistant tumor cells. While tumor cells themselvesmay activate TGFβ, recent observations suggest that environmental tumorpromoters or carcinogens, such as ionizing radiation, can cause stromalfibroblasts to activate TGFβ by epigenetic mechanisms. As thebiological effects of the anti-estrogen tamoxifen may well be mediated byTGFβ, this model has a number of important implications for the clinicaluses of tamoxifen in the prevention and treatment of breast cancer. Inaddition, it suggests a number of novel approaches to the treatment ofadvanced breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Cordon-Cardo C: Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 147: 545–560, 1995

    Google Scholar 

  2. Hosobuchi M, Stampfer MR: Effects of transforming growth factor β on growth of human mammary epithelial cells in culture. In Vitro Cell Develop Biol 25: 705–713, 1989

    Google Scholar 

  3. Valverius EM, Walker-Jones D, Bates SE, Stampfer MR, Clark R, McCormick F, Dickson RB, Lippman ME: Production of and responsiveness to transforming growth factor-β in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 49: 6269–6274, 1989

    Google Scholar 

  4. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW: Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113: 867–878, 1991

    Google Scholar 

  5. Silberstein GB, Flanders KC, Roberts AB, Daniel CW: Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol 152: 354–362, 1992

    Google Scholar 

  6. Pierce DFJ, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BLM, Moses H: Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mouse expressing active TGFβ1. Genes & Dev 7: 2308–2317, 1993

    Google Scholar 

  7. Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen AB, Roberts AB, Smith GH, Merlino G: Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 12: 1835–1845, 1993

    Google Scholar 

  8. Strange R, Li F, Saurer S, Burkhardt A, Friis RR: Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115: 49–58, 1992

    Google Scholar 

  9. Wakefield LM, Letterio JJ, Geiser AG, Flanders KC, O'Shaughnessy J, Roberts AB, Sporn MB: Transforming growth factor-beta's in mammary tumorigenesis: promoters or antipromoters? Prog Clin Biol Res 391: 133–148, 1995

    Google Scholar 

  10. Fynan TM, Reiss M: Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncogenesis 4: 493–540, 1993

    Google Scholar 

  11. Thompson NL, Flanders KC, Smith JM, Ellingsworth LR, Roberts AB, Sporn MB: Expression of transforming growth factor β1 in specific cells and tissues of adult and neonatal mice. J Cell Biol 108: 661–669, 1988

    Google Scholar 

  12. Li L, Hu J-S, Olson EN: Different members of the jun proto-oncogene family exhibit distinct patterns of expression in response to type β transforming growth factor. J Biol Chem 265: 1556–1562, 1990

    Google Scholar 

  13. Stampfer MR, Yaswen P, Alhadeff M, Hosoda J: TGF beta induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. J Cell Physiol 155: 210–221, 1993

    Google Scholar 

  14. Arteaga CL, Tandon AK, Von Hoff DD, Osborne CK: Transforming growth factor-β: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res 48: 3898–3904, 1988

    Google Scholar 

  15. Kalkhoven E, Kwakkenbos-Isbrücker L, Mummery CL, De Laat SW, van den Eijnden-van Raaij AJM, van der Saag PT, van der Burg B: The role of TGFβ production in growth inhibition of breast-tumor cells by progestins. Int J Cancer 61: 80–86, 1995

    Google Scholar 

  16. Walker RA, Dearing SJ: Transforming growth factor beta 1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 28: 641–644, 1992

    Google Scholar 

  17. McCune BK, Mullin BR, Flanders KC, Jaffurs WJ, Mullen LT, Sporn MB: Localization of transforming growth factor-beta isotypes in lesions of the human breast [see comments]. Hum Pathol 23: 13–20, 1992

    Google Scholar 

  18. Dalal BI, Keown PA, Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143: 381–389, 1993

    Google Scholar 

  19. Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA: Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res 52: 6949–6952, 1992

    Google Scholar 

  20. Welch DR, Fabra A, Nakajima M: Transforming growth factor β stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 87: 7678–7682, 1990

    Google Scholar 

  21. Arrick BA, Lopez AR, Elfman F, Ebner R, Damsky CH, Derynck R: Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor beta 1. J Cell Biol 118: 715–726, 1992

    Google Scholar 

  22. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT: Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92: 2569–2576, 1993

    Google Scholar 

  23. Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA: Transforming growth factor beta 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ 4: 193–201, 1993

    Google Scholar 

  24. Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF: Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 54: 5086–5091, 1994

    Google Scholar 

  25. Miyazono K, Hellman U, Wernstedt C, Heldin C-H: Latent high molecular weight complex of transforming growth factor-β from human platelets: a high molecular weight complex containing precursor sequences. J Biol Chem 263: 6407–6415, 1988

    Google Scholar 

  26. Massagué J: Receptors for the TGFβ family. Cell 69: 1067–1070, 1992

    Google Scholar 

  27. Miyazono K, Heldin C-H: Latent forms of TGFβ: molecular structure and mechanisms of activation. In: Bock GR, Marsh J (eds) Clinical Applications of TGFβ. Wiley, Chichester, 1991, pp 81–92

    Google Scholar 

  28. Border WA, Noble NA: Transforming growth factor β in tissue fibrosis. N Engl J Med 331: 1286–1292, 1994

    Google Scholar 

  29. Flaumenhaft R, Rifkin DB: The extracellular regulation of growth factor action. Mol Cell Biol 3: 1057–1065, 1992

    Google Scholar 

  30. Foekens JA, Schmitt M, van Putten WL, Peters HA, Bontenbal M, Janicke F, Klijn JG: Prognostic value of urokinase-type plasminogen activator in 671 primary breast cancer patients. Cancer Res 52: 6101–6105, 1992

    Google Scholar 

  31. Janicke F, Schmitt M, Pache L, Ulm K, Harbeck N, Hofler H, Graeff H: Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 24: 195–208, 1993

    Google Scholar 

  32. Grondahl-Hansen J, Christensen IJ, Rosenquist C, Brunner N, Mouridsen HT, Dano K, Blichert-Toft M: High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53: 2513–2521, 1993

    Google Scholar 

  33. Odekon LE, Blasi F, Rifkin DB: Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta. J Cell Physiol 158: 398–407, 1994

    Google Scholar 

  34. Nielsen BS, Sehested M, Timshel S, Pyke C, Dano K: Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 74: 168–177, 1996

    Google Scholar 

  35. Barcellos-Hoff MH: Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res 53: 3880–3886, 1993

    Google Scholar 

  36. Mackie EJ, Halfter W, Liverani D: Induction of tenascin in healing wounds. J Cell Biol 107: 2757–2767, 1988

    Google Scholar 

  37. Laurent TC, Fraser RE: Hyaluronan. FASEB J 6: 2397–2404, 1992

    Google Scholar 

  38. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T: Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47: 131–139, 1986

    Google Scholar 

  39. Mackie EJ, Chiquet-Ehrismann R, Pearson CA, Inaguma Y, Taya K, Kawarada Y, Sakakura T: Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc Natl Acad Sci USA 84: 4621–4625, 1987

    Google Scholar 

  40. Howeedy AA, Virtanen I, Laitinen L, Gould NS, Koukoulis GK, Gould VE: Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab Invest 63: 798–806, 1990

    Google Scholar 

  41. Barcellos-Hoff MHR, Derynck R, Tsang L-S, Weatherbee JA: Transforming growth factor-β activation in irradiated murine mammary gland. J Clin Invest 93: 892–899, 1994

    Google Scholar 

  42. Fowlis DJ, Flanders KC, Duffie E, Balmain A, Akhurst RJ: Discordant localisation of TGFβ RNA and protein during chemical carcinogenesis in mouse skin. Cell Growth Differ 3: 81–91, 1992

    Google Scholar 

  43. Esherick JS, DiCunto F, Flanders KC, Missero C, Dotto GP: Transforming growth factorβ1 induction is associated with transforming growth factorβ2 and β3 down-modulation in 12-O-tetradecanoylphorbol-13-acetate-induced skin hyperplasia. Cancer Res 53: 5507–5512, 1993

    Google Scholar 

  44. Barcellos-Hoff MH, Ehrhart EJ, Kalia M, Jirtle R, Flanders K, Tsang ML-S: Immunohistochemical detection of active TGFβ in situ using engineered tissue. Am J Pathol 147: 1228–1237, 1995

    Google Scholar 

  45. Jirtle RL, Hankinc GR, Reisenbichler H, Boyer IJ: Regulation of mannose-6-phosphate/insulin-like growth factor-II receptors and transforming growth factor beta during liver tumor promotion with phenobarbital. Carinogenesis 15: 1473–1478, 1994

    Google Scholar 

  46. Mansbach JM, Mills JJ, Boyer IJ, De Souza AT, Hankins GR, Jirtle RL: Phenobarbital selectively promotes initiated cells with reduced TGF beta receptor levels. Carcino-genesis 17: 171–174, 1996

    Google Scholar 

  47. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428, 1987

    Google Scholar 

  48. Zugmaier G, Ennis BW, Deschauer B, Katz D, Knabbe C, Wilding G, Daly P, Lippman ME, Dickson RB: Transforming growth factor type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 141: 353–361, 1989

    Google Scholar 

  49. Herman ME, Katzenellenbogen BS: Alterations in transforming growth factor-alpha and-beta production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth. Cancer Res 54: 5867–5874, 1994

    Google Scholar 

  50. Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL: Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92: 4254–4258, 1995

    Google Scholar 

  51. Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R, Deschauer B, Simpson S, Dickson RB, Lippman M: Transforming growth factor β1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51: 3590–3594, 1991

    Google Scholar 

  52. Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA, Lodish HF: Expression cloning of the TGFβ type II receptor, a functional transmembrane serine/threonine kinase. Cell 68: 775–785, 1992

    Google Scholar 

  53. Franzén P, Ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H, Miyazono K: Cloning of a TGFβ type I receptor that forms a heterodimeric complex with the TGFβ type II receptor. Cell 75: 681–692, 1993

    Google Scholar 

  54. Lin HY, Moustakas A: TGF-beta receptors: structure and function. Cell Mol Biol 40: 337–349, 1994

    Google Scholar 

  55. ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin C-H, Miyazono K: Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8: 2879–2887, 1993

    Google Scholar 

  56. Attisano L, Wrana JL, Lopez-Casillas F, Massagué J: TGF beta receptors and actions. Biochim Biophys Acta 1222: 71–80, 1994

    Google Scholar 

  57. Chen R-H, Derynck R: Homomeric interactions between type II transforming growth factor-β receptors. J Biol Chem 269: 22868–22874, 1994

    Google Scholar 

  58. Wrana JL, Attisano L, Cárcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massagué J: TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014, 1992

    Google Scholar 

  59. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J: Mechanism of activation of the TGFβ receptor. Nature 370: 341–347, 1994

    Google Scholar 

  60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFβ family with the immunophilin FKBP-12. Science 265: 674–676, 1994

    Google Scholar 

  61. Chen R-H, Miettinen PJ, Maruoka EM, Choy L, Derynck R: A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptor. Nature 377: 548–552, 1995

    Google Scholar 

  62. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Google Scholar 

  63. Yan ZF, Winawer S, Friedman E: Two different signal transduction pathways can be activated by transforming growth factor beta 1 in epithelial cells. J Biol Chem 269: 13231–13237, 1994

    Google Scholar 

  64. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K: Identification of a member of the MAPKKK family as a potential mediator of TGFβ signal transduction. Science 270: 2008–2011, 1995

    Google Scholar 

  65. Fischer JR, Darjes H, Lahm H, Schindel M, Drings P, Krammer PH: Constitutive secretion of bioactive transforming growth factor beta 1 by small lung cancer cell lines. Eur J Cancer 30A: 2125–2129, 1994

    Google Scholar 

  66. Nørgaard P, Damstrup L, Rygaard K, Spang-Thomsen M, Skovgaard Poulsen H: Growth suppression by transforming growth factor beta 1 of human-cell lung cancer cell lines is associated with expression of the type II receptor. Br J Cancer 69: 802–808, 1994

    Google Scholar 

  67. Hannon GJ, Beach D: p15INK4B is a potential effector of TEGFβ-induced cell cycle arrest. Nature 371: 257–261, 1994

    Google Scholar 

  68. Li J-M, Nichols MA, Chandrasekharan S, Xiong Y, Wang X-F: Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INI4B through an Sp1 consensus site. J Biol Chem 270: 26750–26753, 1995

    Google Scholar 

  69. Geng Y, Weinberg RA: Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 90: 10315–10319, 1993

    Google Scholar 

  70. Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGFβ inhibition of cdk4 synthesis is linked to cell cycle arrest. Cell 74: 1009–1020, 1993

    Google Scholar 

  71. Gerwein BI, Spillare E, Forrestier K, Lehman TA, Kispert J, Welsh JA, Pfeifer AMA, Lechner JF, Baker SJ, Vogelstein B, Harris CC: Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor β1. Proc Natl Acad Sci USA 89: 2759–2763, 1992

    Google Scholar 

  72. Reiss M, Vellucci VF, Zhou Z-L: Loss of sensitivity to the anti-proliferative effect of transforming growth factor-β1 associated with the expression of mutant p53 tumor suppressor gene in murine keratinocytes. Cancer Res 53: 899–904, 1993

    Google Scholar 

  73. Okamoto A, Jiang W, Kim SJ, Spillare EA, Stoner G, Weinstein IB, Harris CC: Overexpression of human cyclin D1 reduces the transforming growth factor beta (TGF-beta) type II receptor and growth inhibition by TGF-beta 1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA 91: 11570–11580, 1994

    Google Scholar 

  74. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL: Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127–2133, 1993

    Google Scholar 

  75. Zukerberg LR, Yang WI, Gadd M, Thor AD, Koerner FC, Schmidt EV, Arnold A: Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene. Mod Pathol 8: 560–567, 1995

    Google Scholar 

  76. Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS: Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nature Med 1: 1257–1260, 1995

    Google Scholar 

  77. Laiho M, Weis FMB, Boyd FT, Ignotz RA, Massagué J: Responsiveness to transforming growth factor-β (TGFβ) restored by complementation between cells defective in TGFβ receptors I and II. J Biol Chem 266: 9108–9112, 1991

    Google Scholar 

  78. Geiser AG, Burmester JK, Webbink R, Roberts AB, Sporn MB: Inhibition of growth by transforming growth factor-β following fusion of two nonresponsive human carcinoma cell lines. J Biol Chem 267: 2588–2593, 1992

    Google Scholar 

  79. Kalkhoven E, Roelen BAJ, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJM, van der Saag PT, van der Burg B: Resistance to transforming growth factor β and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Diff 6: 1151–1156, 1995

    Google Scholar 

  80. Sun L, Wu G, Willson JK, Zborowska E, Yang J, Rajkarunanayake I, Wang J, Gentry LE, Wang XF, Brattain MG: Expression of transforming growth factor beta type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 269: 26449–26455, 1994

    Google Scholar 

  81. Kim IY, Ahn H-J, Zelner DJ, Shaw JW, Sensibar JA, Kim J-H, Kato M, Lee C: Genetic change in transforming growth factor-β (TGF-β) receptor type I gene correlates with insensitivity to TGFβ1 in human prostate cancer cells. Cancer Res 56: 44–48, 1996

    Google Scholar 

  82. Kadin ME, Cavaille-Coll MW, Gertz R, Massagué J, Cheifetz S, George D: Loss of receptors for transforming growth factor β in human T-cell malignancies. Proc Natl Acad Sci USA 91: 6002–6006, 1994

    Google Scholar 

  83. Capocasale RJ, Lamb RJ, Vonderheid EC, Fox FE, Rook AH, Nowell PC, Moore JS: Reduced surface expression of transforming growth factor β receptor type II in mitogen-activated T cells from Sézary patients. Proc Natl Acad Sci USA 92: 5501–5505, 1995

    Google Scholar 

  84. Jakowlew SB, Mathias A, Chung P, Moody TW: Expression of transforming growth factor beta ligand and receptor messenger RNAs in lung cancer cell lines. Cell Growth Differ 6: 465–476, 1995

    Google Scholar 

  85. Damstrup L, Rygaard K, Spang-Thomsen M, Skovgaard Poulsen H: Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines. Br J Cancer 67: 1015–1021, 1993

    Google Scholar 

  86. Friess H, Yamanaka Y, Büchler M, Beger HG, Kobrin MS, Baldwin RL, Kore M: Enhanced expression of the type II transforming growth factor β receptor in human pancreatic cancer cells without alteration of type II receptor expression. Cancer Res 53: 2704–2707, 1993

    Google Scholar 

  87. Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M: Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res 55: 3982–3987, 1995

    Google Scholar 

  88. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV: Inactivation of the type II TGFβ receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338, 1995

    Google Scholar 

  89. Myeroff LL, Parsons R, Kim S-J, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K, Bang Y-J, Lee HY, Park J-G, Lynch HT, Roberts AB, Vogelstein B, Markowitz SD: A transforming growth factor β type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55: 5545–5547, 1995

    Google Scholar 

  90. Parsons R, Myeroff LL, Liu B, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B: Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res 55: 5548–5550, 1995

    Google Scholar 

  91. Pavelic K, Antonic M, Pavelic L, Pavelic J, Pavelic Z, Spaventi S: Human lung cancers growing on extracellular matrix: expression of oncogenes and growth factors. Anticancer Res 12: 2191–2196, 1992

    Google Scholar 

  92. Ke Y, Stoner GD, Demetrick DJ, Bennett WP: Mutation analysis of the transforming growth factor beta type II receptor in sporadic human cancers of the pancreas, liver and breast. Proc Am Assoc Cancer Res 37: 116, 1996

    Google Scholar 

  93. Roth JA, Mukhopadhyay T, Tainksky MA, Fang K, Casson AG, Schneider PM: Molecular approaches to prevention and therapy of aerodigestive tract cancers. Monogr Natl Cancer Inst 15–21, 1992

  94. Ji H, Stout LE, Zhang Q, Zhang R, Leung HT, Leung BS: Absence of transforming growth factor-beta responsiveness in the tamoxifen growth-inhibited human breast cancer cell line CAMA-1. J Cell Biochem 54: 332–342, 1994

    Google Scholar 

  95. Kopp A, Jonat W, Schmahl M, Knabbe C: Transforming growth factor beta 2 (TGF-beta 2) levels in plasma of patients with metastatic breast cancer treated with tamoxifen. Cancer Res 55: 4512–4515, 1995

    Google Scholar 

  96. Knabbe C, Kopp A, Hilgers W, Lang D, Muller V, Zugmaier G, Jonat W: Regulation and role of TGF beta production in breast cancer. Ann NY Acad Sci 784: 263–276, 1996

    Google Scholar 

  97. Butta A, MacLennan K, Flanders KC, Sacks NPM, Smith I, McKinna A, Dowsett M, Wakefield LM, Sporn MB, Baum M, Colletta AA: Induction of transforming growth factor β1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res 52: 4261–4264, 1992

    Google Scholar 

  98. Murray PA, Gomm J, Ricketts D, Powles T, Coombes RC: The effect of endocrine therapy on the levels of oestrogen and progesterone receptor and transforming growth factor-beta 1 in metastatic human breast cancer: an immunocytochemical study. Eur J Cancer 30A: 1218–1222, 1994

    Google Scholar 

  99. MacCallum J, Keen JC, Bartlett JM, Thompson AM, Dixon JM, Miller WR: Changes in expression of transforming growth factor beta mRNA isoform in patients undergoing tamoxifen therapy. Br J Cancer 74: 474–478, 1996

    Google Scholar 

  100. Benson JR, Wakefield LM, Baum M, Colletta AA: Synthesis and secretion of transforming growth factor beta isoforms by primary cultures of human breast tumour fibroblasts in vitro and their modulation by tamoxifen. Br J Cancer 74: 352–358, 1996

    Google Scholar 

  101. Group EBCTC: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. Lancet 339: 1–15, 71–85, 1992

    Google Scholar 

  102. McGuire WL, Vollmer EP, Carbone PP: Estrogen Receptors in Human Breast Cancer. Raven Press, New York, 1975

    Google Scholar 

  103. Johnston SRD, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M, Ebbs SR, Dowsett M: Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55: 3331–3338, 1995

    Google Scholar 

  104. Karnik PS, Kulkarni S, Liu XP, Budd GT, Bukowski RM: Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res 54: 349–353, 1994

    Google Scholar 

  105. Osborne CK, Fuqua SA: Mechanisms of tamoxifen resistance. Breast Cancer Res Treat 32: 49–55, 1994

    Google Scholar 

  106. Thompson AM, Kerr DJ, Steel CM: Transforming growth factor beta 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 63: 609–614, 1991

    Google Scholar 

  107. Foekens JA, Look MP, Peters HA, van Putten WL, Portengen H, Klijn JG: Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst 87: 751–756, 1995

    Google Scholar 

  108. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, Baylin SB: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704, 1994

    Google Scholar 

  109. Fisher B, Costantino J, Redmond C, Fisher E, Margolese R, Dimitrov N, Wolmark N, Wickerham DL, Deutsch M, Ore L, Mamounas E, Poller W, Kavanah M: Lumpectomy compared with lumpectomy and radiation therapy for the treatment of intraductal breast cancer. N Engl J Med 328: 1581–1586, 1993

    Google Scholar 

  110. Dickens TA, Colletta AA: The pharmacological manipulation of members of the transforming growth factor beta family in the chemoprevention of breast cancer. Bioassays 15: 71–74, 1993

    Google Scholar 

  111. Bush TL, Helzlsouer KJ: Tamoxifen for the primary prevention of breast cancer: a review and critique of the concept and trial. Epidemiol Rev 15: 233–243, 1993

    Google Scholar 

  112. Powles TJ, Jones AL, Ashley SE, O'Brien ME, Tidy VA, Treleavan J, Cosgrove D, Nash AG, Sacks N, Baum M, et al.: The Royal Marsden Hospital pilot tamoxifen chemoprevention trial. Breast Cancer Res Treat 31: 73–82, 1994

    Google Scholar 

  113. Kojima S, Rifkin DB: Mechanism of retinoid-induced activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Physiol 155: 323–332, 1993

    Google Scholar 

  114. Costa A, Formelli F, Chiesa F, Decensi A, De Palo G, Veronesi U: Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide. Cancer Res 54: 1994

  115. Jirtle RL, Haag JD, Ariazi EA, Gould MN: Increased mannose-6-phosphate/insulin-like growth factor II receptor and transforming growth factor-β1 levels during monoterpene-induced regression of mammary tumors. Cancer Res 53: 3849–3852, 1993

    Google Scholar 

  116. Nørgaard P, Spang-Thomsen M, Poulsen HS: Expression and autoregulation of transforming growth factor β receptor mRNA in small-cell lung cancer cell lines. Br J Cancer 73: 1037–1043, 1996

    Google Scholar 

  117. Kashii T, Mizushima Y, Monno S, Nakagawa K, Kobayashi M: Gene analysis of K-, H-ras, p53, and retinoblastoma susceptibility genes in human lung cancer cell lines by the polymerase chain reaction/single-strand conformation polymorphism method. J Cancer Res Clin Oncol 120: 143–148, 1994

    Google Scholar 

  118. Niklinski J, Furman M: Clinical tumour markers in lung cancer. Eur J Cancer Prev 4: 129–138, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, M., Barcellos-Hoff, M.H. Transforming growth factor-β in breast cancer: A working hypothesis. Breast Cancer Res Treat 45, 81–95 (1997). https://doi.org/10.1023/A:1005865812918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005865812918

Navigation