Skip to main content
Log in

Metabolic imaging using F18-fluorodeoxyglucose to assess myocardial viability

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Over the past 10 years, F18-fluorodeoxyglucose (FDG) imaging with positron emission tomography (PET) has emerged as an important technique in the delineation of myocardial viability. Using this technique it has become possible to predict recovery of ventricular function after revascularization in patients with chronic coronary artery disease. Data from long-term (although retrospective) follow-up studies have demonstrated that patients with viable myocardium on FDG PET who do not undergo revascularization are prone to cardiac events, including cardiac death and non-fatal infarction. The same studies have pointed out that patients with viable tissue on FDG PET, who do undergo revascularization, improve substantially in symptoms related to congestive heart failure. To allow FDG imaging in centers without PET equipment, recent studies have evaluated the use of FDG imaging with single photon emission computed tomography (SPECT) and 511 keV collimators. Preliminary data using this alternative approach are promising, but need further confirmation. In this review the experience with FDG imaging (using either PET or SPECT) in the assessment of tissue viability in patients with coronary artery disease will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alderman EL, Fisher LD, Litwin P et al. Results of coronary artery bypass surgery in patients with poor left ventricular function (CASS). Circulation 1983; 68: 785-795.

    Article  CAS  PubMed  Google Scholar 

  2. Passamani E, Davis BD, Gillespie MJ, Killip T and the CASS principal investigators and their associates. A randomized trial of coronary artery bypass surgery. Survival of patients with low ejection fraction. N Eng J Med 1985; 312: 1665-1671.

    Article  CAS  Google Scholar 

  3. Pigott JD, Kouchoukos NT, Oberman A, Cutter GR. Late results of surgical and medical therapy for patients with coronary artery disease and depressed left ventricular function. J Am Coll Cardiol 1985; 5: 1036-1045.

    Article  CAS  PubMed  Google Scholar 

  4. Elefteriades JA, Tolis Jr G, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: Excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol 1993; 22: 1411-1417.

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy JW, Kaiser GC, Fisher LD et al. Clinical and angiographic predictors of operative mortality from the collaborative study in coronary artery surgery (CASS). Circulation 1981; 63: 793-802.

    Article  CAS  PubMed  Google Scholar 

  6. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing viability in patients with hibernating and stunned myocardium. Circulation 1993; 87: 1-20.

    Article  CAS  PubMed  Google Scholar 

  7. Smart SC. The clinical utility of echocardiography in the assessment myocardial viability. J Nucl Med 1994; 35(Suppl): 49S-58S.

    CAS  PubMed  Google Scholar 

  8. Van der Wall EE, Vliegen HW, De Roos A, Bruschke AVG. Magnetic resonance imaging in coronary artery disease. Circulation 1995; 92: 2723-2739.

    Article  CAS  PubMed  Google Scholar 

  9. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med; 1986; 314: 884-888.

    Article  CAS  PubMed  Google Scholar 

  10. Tamaki N, Yonekura Y, Yamashita K et al. PET using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989; 64: 860-865.

    Article  CAS  PubMed  Google Scholar 

  11. Tamaki N, Ohtani H, Yamashita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673-678.

    CAS  PubMed  Google Scholar 

  12. Lucignani G, Paolini G, Landoni C et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile SPECT and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 874-881.

    Article  CAS  PubMed  Google Scholar 

  13. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992; 6: 479-484.

    Article  CAS  PubMed  Google Scholar 

  14. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. Circulation 1992; 85: 1347-1353.

    Article  CAS  PubMed  Google Scholar 

  15. Gropler RJ, Geltman EM, Sampathkumaran K et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993; 22: 1587-1597.

    Article  CAS  PubMed  Google Scholar 

  16. Gropler RJ, Geltman EM, Sampathkumaran K et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintainance of oxidative metabolism. J Am Coll Cardiol 1992; 20: 569-577.

    Article  CAS  PubMed  Google Scholar 

  17. Tamaki N, Kawamoto M, Tadamura E et al. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 1995; 91: 1697-1705.

    Article  CAS  PubMed  Google Scholar 

  18. Vom Dahl J, Eitzman DT, Al-Aouar ZR et al. Relation of regional function, perfusion and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994; 90: 2356-2366.

    Article  CAS  PubMed  Google Scholar 

  19. Knuuti MJ, Saraste M, Nuutila P et al. Myocardial viability: Fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 1994; 127: 785-796.

    Article  CAS  PubMed  Google Scholar 

  20. Martin WH, Delbeke D, Patton JA et al. FDG-SPECT: Correlation with FDG-PET. J Nucl Med 1995; 36: 988-995.

    CAS  PubMed  Google Scholar 

  21. Sandler MP, Videlefsky S, Delbeke D et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition singlephoton emission computed tomography. J Am Coll Cardiol 1995; 26: 870-888.

    Article  CAS  PubMed  Google Scholar 

  22. Burt RW, Perkins OW, Oppenheim BE et al. Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for the detection of myocardial viability. J Nucl Med 1995; 36: 176-179.

    CAS  PubMed  Google Scholar 

  23. Delbeke D, Videlefsky S, Patton JA et al. Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med 1995; 36: 2110-2119.

    CAS  PubMed  Google Scholar 

  24. Stoll HP, Hellwig N, Alexander C, Ozbek C, Schieffer H, Oberhausen E. Myocardial metabolic imaging by means of fluorine-18 deoxyglucose/technetium-99m sestamibi dualisotope single-photon emission tomography. Eur J Nucl Med 1994; 21: 1085-1093.

    Article  CAS  PubMed  Google Scholar 

  25. Bax JJ, Visser FC, van Lingen A et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emission computed tomography. Eur Heart J 1993; 14: 1675-82.

    Article  CAS  PubMed  Google Scholar 

  26. Bax JJ, Visser FC, Blanksma PK et al. Comparison of myocardial uptake of 18F-fluorodeoxyglucose imaged with positron emission tomography and single photon emission computed tomography in dyssynergic myocardium. J Nucl Med 1996; 37: 1631-1636.

    CAS  PubMed  Google Scholar 

  27. Tennant R, Wiggers CJ. The effects of coronary occlusion on myocardial contraction. Am J Physiol 1935; 112: 351-361.

    Google Scholar 

  28. Ross Jr JR. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 1991; 83: 1076-1083.

    Article  PubMed  Google Scholar 

  29. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72(suppl V): V-123-135.

    CAS  Google Scholar 

  30. Bolukoglu H, Liedtke J, Nellis S, Eggleston A, Subramanian R, Renstrom B. An animal model of chronic coronary stenosis resulting in hibernating myocardium. Am J Physiol 1992; 263: H20-H29.

    CAS  PubMed  Google Scholar 

  31. Vanoverschelde JLJ, Wijns W, Depré C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993; 87: 1513-1523.

    Article  CAS  PubMed  Google Scholar 

  32. Marinho NVS, Keogh BE, Costa DC, Lammertsma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996; 93: 737-744.

    Article  CAS  PubMed  Google Scholar 

  33. Mäki M, Luotolahti M, Nuutila P et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 1996; 93: 1658-1666.

    Article  PubMed  Google Scholar 

  34. Bing RJ. Cardiac metabolism. Physiol Rev 1965; 45: 171-213.

    CAS  PubMed  Google Scholar 

  35. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart muscle. Ann Rev Physiol 1974; 36: 412-459.

    Article  Google Scholar 

  36. Vary TC, Reibel DK, Neely JR. Control of energy metabolism of heart muscle. Ann Rev Physiol 1981; 43: 419-430.

    Article  CAS  Google Scholar 

  37. Drake-Holland AJ. Substrate utilization. In: Drake-Holland AJ, Noble MI, eds. Cardiac Metabolism. New York, NY: Wiley; 1983.

    Google Scholar 

  38. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981; 23: 321-336.

    Article  CAS  PubMed  Google Scholar 

  39. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989; 32: 217-238.

    Article  CAS  PubMed  Google Scholar 

  40. Wisneski JA, Gertz EW, Neese RA, Gruenke LD, Craig JC. Dual carbon-labeled isotope experiments using D[6-14C] glucose and L-[1,2,3-13C3] lactate: A new approach for investigating human myocardial metabolism during ischemia. J Am Coll Cardiol 1985; 5: 1138-1146.

    Article  CAS  PubMed  Google Scholar 

  41. Opie LH. Effects of regional ischemia on metabolism of glucose and fatty acids: Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 1976; 38(suppl I): I-51-74.

    Google Scholar 

  42. Schelbert HR. Positron Emission Tomography for the assessment of myocardial viability. Circulation 1991; 84(suppl I): I-122-131.

    CAS  Google Scholar 

  43. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 1991; 32: 565-578.

    CAS  PubMed  Google Scholar 

  44. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: Some factors responsible for the biodistribution of 18F-2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19: 1154-1161.

    CAS  PubMed  Google Scholar 

  45. Phelps ME, Hoffman EJ, Selin C et al. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 1978; 19: 1311-1319.

    CAS  PubMed  Google Scholar 

  46. Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med 1994; 35(Suppl): 8S-14S.

    CAS  PubMed  Google Scholar 

  47. Brunken R, Tillisch J, Schwaiger M et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: Evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986; 73: 951-963.

    Article  CAS  PubMed  Google Scholar 

  48. Mock M, Ringqvist I, Fisher LD et al. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation 1982; 66: 562-568.

    Article  CAS  PubMed  Google Scholar 

  49. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76: 44-51.

    Article  CAS  PubMed  Google Scholar 

  50. Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994; 90: 735-745.

    Article  CAS  PubMed  Google Scholar 

  51. Depré C, Vanoverschelde JLJ, Melin JA et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268: H1265-H1275.

    PubMed  Google Scholar 

  52. Brunken R, Schwaiger M, Grover-McKay M et al. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987; 10: 557-567.

    Article  CAS  PubMed  Google Scholar 

  53. Tamaki N, Yonekura Y, Yamashita K et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 1988; 62: 202-208.

    Article  CAS  PubMed  Google Scholar 

  54. Brunken RC, Vaghaiwalla Mody F, Hawkins RA et al. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201Tl defects. Circulation 1992; 86: 1357-1369.

    Article  CAS  PubMed  Google Scholar 

  55. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991; 83: 26-37.

    Article  CAS  PubMed  Google Scholar 

  56. Gerber BL, Vanoverschelde JL, Bol A et al. Comparison of Tl-201 SPECT and PET to predict viable myocardium in patients with ischemic left ventricular dysfunction. Eur J Nucl Med 1994; 21: 725 [abstract].

    Google Scholar 

  57. Dilsizian V, Perrone-Filardi P, Arrighi JA et al. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation 1993; 88: 941-952.

    Article  CAS  PubMed  Google Scholar 

  58. Altehoefer C, Vom Dahl J, Biedermann M et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: Comparison with fluorine-18-FDG PET. J Nucl Med 1994; 35: 569-574.

    CAS  PubMed  Google Scholar 

  59. Altehoefer C, Kaiser HJ, Doerr R et al. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99Tc-MIBI SPET: A comparative study in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 334-342

    Article  CAS  PubMed  Google Scholar 

  60. Soufer R, Dey HM, Ng CK, Zaret BL. Comparison of sestamibi single-photon emission computed tomography with positron emission tomography for estimating left ventricular myocardial viability. Am J Cardiol 1995; 75: 1214-1219.

    Article  CAS  PubMed  Google Scholar 

  61. Dilsizian V, Arrighi JA, Diodati JG et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation 1994; 89: 578-587.

    Article  CAS  PubMed  Google Scholar 

  62. Sawada S, Allman KC, Muzik O et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol 1994; 23: 92-98.

    Article  CAS  PubMed  Google Scholar 

  63. Rossetti C, Landoni C, Lucignani G et al. Assessment of myocardial perfusion and viability with technetium-99m methoxyisobutylisonitrile and thallium-201 rest redistribution in chronic coronary artery disease. Eur J Nucl Med 1995; 22: 1306-1312.

    Article  CAS  PubMed  Google Scholar 

  64. Baer FM, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose PET. J Am Coll Cardiol 1994; 24: 343-353.

    Article  CAS  PubMed  Google Scholar 

  65. Piérard LA, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 1990; 15: 1021-31.

    Article  PubMed  Google Scholar 

  66. Chan RKM, Lee KJ, Calafiore P, Berlangieri SU, McKay WJ, Tonkin AM. Comparison of dobutamine echocardiography and positron emission tomography in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 1996; 27: 1601-1607.

    Article  CAS  PubMed  Google Scholar 

  67. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradientecho magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995; 91: 1006-1015.

    Article  CAS  PubMed  Google Scholar 

  68. Eitzman D, Al-Aouar ZR, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992; 20: 559-565.

    Article  CAS  PubMed  Google Scholar 

  69. Tamaki N, Kawamoto M, Takahashi N et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: Comparison with stress thallium imaging. J Am Coll Cardiol 1993; 22: 1621-1627.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993; 22: 984-987.

    Article  CAS  PubMed  Google Scholar 

  71. Di Carli M, Davidson M, Little R et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994; 73: 527-533.

    Article  CAS  PubMed  Google Scholar 

  72. Lee KS, Marwick TH, Cook SA et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994; 90: 2687-2694.

    Article  CAS  PubMed  Google Scholar 

  73. Di Carli MF, Asgarzadie F, Schelbert HR et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995; 92: 3436-3444.

    Article  CAS  PubMed  Google Scholar 

  74. Van Lingen A, Huijgens PC, Visser FC et al. Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 1992; 19: 315-321.

    Article  CAS  PubMed  Google Scholar 

  75. Huitink JM, Visser FC, van Lingen A et al. Feasibility of planar fluorine-18-FDG imaging after recent myocardial infarction to assess myocardial viability. J Nucl Med 1995; 36: 975-981.

    CAS  PubMed  Google Scholar 

  76. Kalff V, Berlangieri SU, Van Every B et al. Is planar thallium-201/fluorine-18 fluorodeoxyglucose imaging a reasonable clinical alternative to positron emission tomographic viability scanning? Eur J Nucl Med 1995; 22: 625-632.

    Article  CAS  PubMed  Google Scholar 

  77. Melin JA, Becker L. Quantitative relationship between global left ventricular thallium uptake and blood flow: Effects of propranolol, ouabain, dipyridamole and coronary artery occlusion. J Nucl Med 1986; 7: 527-537.

    Google Scholar 

  78. Gropler RJ. Methodology governing the assessment of myocardial glucose metabolism by positron emission tomography and fluorine 18-labeled fluorodeoxyglucose. J Nucl Cardiol 1994; 1: S1-S14.

    Article  Google Scholar 

  79. Knuuti MJ, Nuutila P, Ruotsalainen U et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992; 33: 1255-1262.

    CAS  PubMed  Google Scholar 

  80. Vom Dahl J, Hermann WH, Hicks RJ et al. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed by positron emission tomography. Circulation 1993; 88: 395-404.

    Article  CAS  PubMed  Google Scholar 

  81. Ohtake T, Yokoyama I, Watanabe T et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995; 36: 456-463.

    CAS  PubMed  Google Scholar 

  82. Bax JJ, Visser FC, van Lingen A et al. Relation between myocardial uptake of thallium-201 chloride and F18-fluorodeoxyglucose imaged with SPECT in normal volunteers. Eur J Nucl Med 1995; 22: 56-60.

    Article  CAS  PubMed  Google Scholar 

  83. Bax JJ, Cornel JH, Visser FC et al. Quantitative analysis of FDG and T1-201 SPECT for the prediction of functional outcome after revascularization. J Nucl Med 1995; 36: 36P [abstract].

    Google Scholar 

  84. Bax JJ, Cornel JH, Visser FC et al. Prediction of recovery of regional ventricular dysfunction following revascularization; Comparison of F18-fluorodeoxyglucose SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996; 28: 558-564.

    Article  CAS  PubMed  Google Scholar 

  85. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Visser CA. Comparison of thallium-201 rest-redistribution SPECT and FDG SPECT in predicting functional recovery after revascularization. J Am Coll Cardiol 1996; 27(suppl A): 300A [abstract].

    Article  Google Scholar 

  86. Vanoverschelde J-L, Melin JA, Depré C, Borgers M, Dion R, Wijns W. Time-course of functional recovery of hibernating myocardium after coronary revascularization. Circulation 1994; 90 (part 2): I-378 [abstract].

    Google Scholar 

  87. Valkema R, Poldermans D, Reijs AEM et al. Evaluation of myocardial viability using dual isotope simultaneous acquisition (DISA) with Tc-99m-tetrofosmin and 18-FDG and a three-head SPECT camera. J Nucl Med 1996; 37: 60P [abstract].

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bax, J.J., Visser, F.C., Lingen, A.v. et al. Metabolic imaging using F18-fluorodeoxyglucose to assess myocardial viability. Int J Cardiovasc Imaging 13, 145–155 (1997). https://doi.org/10.1023/A:1005744810876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005744810876

Navigation